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ABSTRACT 

Hypermedia systems have been demonstrated to support authoring and 

reading of mostly static information. Few systems address the needs of analysts 

deriving information from a continuously changing base of information. Those 

that do, focus on the existing content and use links primarily for navigation and 

management. An open hypermedia architecture is proposed for a class of analysis 

systems where the value added by the analyst is through associating data elements. 

In such systems, links are the primary form of information being managed. 

The architecture developed provides a framework through which 

hypermedia analysis systems can be generated with little or no code development. 

Specifically, the model is shown to apply to the domain of software engineering by 

mapping the analysis portions of a rapid prototyping lifecycle to a schema defined 

using the framework. 

Through the addition of n-ary links and links to links, the architecture 

provides a closer mapping to the Dexter Hypertext Reference Model than current 

graph-based models such as the Multimedia Object Retrieval Environment 

(MORE). Improvements over MORE are also shown in the use of abstraction as a 

filtering mechanism and through the full involvement of links as being the primary 

focus of the analysis, query, and filtering functions. 
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I. INTRODUCTION 

A.       A PATTERN OF ANALYSIS 

In many domains, analysis is an exercise in making connections between pieces of 

information. Physicians providing remote consultations through a telemedicine system can 

be thought of as linking collections of patient encounter information to diagnoses based on 

their experience. The conditions these diagnoses represent have already been discovered 

and described in most cases. In addition, treatment protocols have been developed for 

many of these diagnoses and have been linked to them by medical researchers. The link 

provided by the consultation can have characteristics. For instance, the link might have 

attributes that represent the strength of confidence that the physician has in the diagnosis 

due to the quantity and type of data presented, and the degree to which the physician feels 

the data match expectations. 

Software requirements analysis can be approached in terms of finding elements of 

the system's domain and their interconnections in the development of or linkage to a 

problem frame [Jackson, 1995]. These concepts are then linked to solutions that either 

have been successfully used within the frame before or are newly developed. The 

individual data elements are not typically being initiated by these analysts, although at 

times new notions might be introduced. The majority of their efforts create associations 

between elements that already exist. 

Analysis of this form can support command and control environments as well. 

Actions, orders, and status can be represented through associations. A military planner 

may choose the best way to engage a hostile unit by evaluating information created by 

intelligence analysts that has been developed using tools working just as telemedicine tools 

might function. The results of the planner's analysis are recorded in links between targets, 

weapon systems, tactics, and particular preconditions (e.g., weather). Further, once 

presented several alternative plans in this form, a commander may generate an attack order 

by adding an execution link from the plan to the particular unit that is to carry out the 

attack. Autonomous agents looking for the creation of such links can set a series of 

events into place to ensure the order is issued and can evaluate the status of the plan. The 



Status can be linked to the plan being executed to allow the commander to maintain 

awareness of the situation. 

The figure below shows how a hypergraph can represent the information provided 

to a commander. Here the targets are being evaluated based on attempts to minimize 

collateral damage. A report detailing how Target #2 can be attacked while reducing the 

risk of collateral damage is presented. To order the attack, the commander might connect 

the target, the tactic, and a platform capable of executing the plan. 

Non-Target #2 

Video of test 

amplifies- 

Collateral Damage Risk 

Collateral Damage Risk 

Target #1 

Connections 

Figure 1.1 Hypergraph of a Plan 

The descriptions above fit the criteria for a pattern. They describe a problem that 

reoccurs and present the core of a solution that can be used multiple times [Alexander et. 

al., 1977]. In fact, this pattern is illustrated in a famous use case from the memex device 

proposed as World War II was concluding. 

The owner of the memex, let us say, is interested in the origin and 
properties of the bow and arrow. Specifically he is studying why the short 
Turkish bow was apparently superior to the English long bow in the 
skirmishes of the Crusades. He has dozens of possibly pertinent books and 
articles in his memex. First he runs through an encyclopedia, finds an 
interesting but sketchy article, leaves it projected. Next, in a history, he 
finds another pertinent item, and ties the two together. Thus he goes, 



building a trail of many items. Occasionally he inserts a comment of his 
own, either linking it into the main trail or joining it by a side trail to a 
particular item. When it becomes evident that the elastic properties of 
available materials had a great deal to do with the bow, he branches off on 
a side trail which takes him through textbooks on elasticity and tables of 
physical constants. He inserts a page of longhand analysis of his own. Thus 
he builds a trail of his interest through the maze of materials available to 
him. [Bush, 1945] 

Bush even anticipated the uses of such hypermedia. The future reader is covered 

under another use case, as are link attributes. One attribute of interest to Bush was the 

age of a link and the frequency of its use, allowing links that are accessed more recently to 

be stronger than those that fade with time. Even autonomous agents were envisioned that 

would take care of mechanical actions based on the user's decisions. [Bush, 1945] 

B.        USE OF HYPERMEDIA SYSTEMS FOR SOFTWARE EVOLUTION 

Information generated in this manner can be captured in the form of a hypergraph 

model. The hypergraph model of software evolution is an example [Luqi et. al, 1994] 

[Luqi and Goguen, 1997]. Software analysis is also an exercise in connecting data. 

Though the end goal is to reuse, create or modify software products, the path taken is one 

of matching user needs to software requirements, and software requirements to design 

elements. Throughout this process, analysts create and break associations among pieces 

of information, and in doing so create new information through these structural 

modifications. Each change of the structure has a rationale behind it. right or wrong. 

Each change is an addition to the body of knowledge within the domain. 

One mechanism for automating the management of information modeled in this 

way is through hypermedia systems. Using a hypermedia s\stcm that provides both 

authoring and reading tools, analysts can create information that people and autonomous 

agents can access. What hypermedia systems provide is the abihu to easils work with a 

wide variety of data while utilizing the powerful information present through the 

structures created by the connections made among the various data items [Nürnberg, et. 

al., 1997]. They also allow the user of the information (reader) to access the information 



in ways not necessarily planned by the creator of the information (author). In this way, 

new discoveries can be made from the same body of data as readers with problems 

different from those envisioned by the author look at the hypertext from a different 

perspective. [Nielsen, 1990] 

Modeling associations is not a unique activity to hypermedia system development. 

Object-oriented and relational models also place a great deal of importance on how pieces 

of a domain relate to each other [Rumbaugh et. al., 1991]. Hypermedia stands out in that 

the links stored constitute much of the information content of the system rather than a 

means of connection for objects or entities that embody the focus of the system. Object- 

oriented design methods can prove valuable in developing hypermedia systems once the 

links are defined as objects themselves [Wiil and Leggett, 1997]. 

C.       CONTRIBUTION 

Current hypermedia systems and research focus heavily on the reader of 

hypermedia information. A number of search and navigation methods and models have 

been proposed and demonstrated. Yet, these focus on finding and presenting data objects 

or locating an object currently in focus relative to the entire domain. Filters limit the 

objects shown in a display, while link presentation is based upon the object subset 

presented. These approaches downplay the link's contribution to the hypertext system, 

restricting it to navigation support, rather than treating a link as an atomic unit in the 

development of a structure that represents knowledge within the system. Additionally, 

while data objects and links can be described using object-oriented terms of generalization, 

this attribute is not well used in presenting the information to the reader. 

Authors' tool requirements are not well understood beyond the development of 

online training, journalism, and entertainment products. These systems stress the 

nonsequential nature of hypermedia [Nielsen, 1990]. The information content of the 

linkages is an aid to navigation, but also in subtle ways provides information to the user 

concerning what concepts or actions relate to what others. The dynamic nature of an 

analyst's work is not typically addressed, and tools for authorship that attempt to build a 



domain structure are targeted at software system developers rather than domain analysts 

as end-users. 

For hypermedia systems to be of value to analysts such as those working in 

software evolution, authorship tools need to have a prominent role. Likewise, links must 

be the focus of searches and filters since the links are the primary form of information 

being dealt with by the analyst. Finally, to scale systems and their user interfaces up to 

handle the complexity of data used by analysts, better use of abstraction needs to be 

employed. 

The main contributions of this thesis are: 

• A hypermedia architecture supporting the analysis of software evolution 

consistent with the Dexter Hypertext Reference Model [Halasz and Schwartz, 

1994]. The model presented focuses on the analyst's role in creating 

hyperlinks and adds value to the links through the addition of attributes that 

map to the analysis process. 

• Models for user interaction with the hypermedia that treat links as equals to 

data objects in importance to the reader. Searches and filters operate on links 

as well as data objects and enhance the value of the links through the addition 

of attributes that map to the analysis process. 

• The use of abstraction as a filtering technique to aid the reader in 

understanding the analysis relevant to the reader's problem. Links made 

between specialized objects may be of interest to readers who never wish to 

look at the specialized objects or links themselves but are interested in roaming 

the domain at a higher level of abstraction. 

• The ability for a user to dynamically extend a domain through the addition of 

object classes and link types. Entirely new hypermedia analysis systems can be 

generated with little or no coding. The architecture provides a framework for 

rapidly generating new systems covering new domains. 

• An extension of graph-based query and filter methods [Lucarella and Zanzi, 

1996] to work with hypergraphs. This addition allows better mapping to the 

analysis pattern described earlier, and allows a mapping to the Dexter 



Hypertext Reference Model, which requires the ability to use n-ary links as 

well as link-to-link connections. 

D.        ORGANIZATION OF THESIS 

The rest of this thesis is organized as follows. Chapter II provides a review of 

related research in hypermedia systems and analysis models. For hypermedia, focus is 

given to works that model the underlying architecture for such systems, authoring tools, 

and on user interaction approaches. Hypermedia support for analysis that fit the pattern 

described above are studied to determine what features are essential to provide such 

support through a hypermedia system. Chapter III describes a mathematical model of an 

architecture for hypermedia systems that support analytical efforts in general and software 

engineering in particular. The goal is to provide such support while remaining consistent 

with the Dexter Hypertext Reference Model. Chapter IV describes author/analyst tools 

consistent with the model presented in Chapter III. Tools are described for all the types of 

actions an analyst might make that effect the link storage area structurally. Chapter V 

provides a model for reader interaction with the hypermedia systems generated from the 

framework in Chapter III. Filtering, navigation, and searching operations are all 

considered. As these have been well defined for the data objects themselves, focus is 

given to operating on the links. The use of abstraction for filtering both links and objects 

is demonstrated. Chapter VI demonstrates the use of the architecture as applied to the 

Computer Aided Prototyping System [Luqi and Ketabchi, 1988] in support of software 

requirements analysis. Conclusions and directions for future study are provided in 

Chapter VII. 



II.        TECHNICAL BACKGROUND AND PREVIOUS RESEARCH 

A. HYPERMEDIA 

1.   Structural Computing 

a) General 

Representing information structurally is widely used though its importance is not 

always recognized. Researchers in artificial intelligence (AI) have found that different 

structures constitute different knowledge. Knowledge-based systems often use a network 

of interrelated units to represent information [Travers, 1989]. 

Structural computing is a "philosophy of the primacy of structure" [Nürnberg, et. 

al., 1997]. Most models support the primacy of data objects and allow structures to be 

built through programming. For some problem domains, the structures represent the 

knowledge in the system and the data objects merely play a role as a part of the structure. 

Examples of these domains are argumentation support [Streitz, et. al, 1989], spatial 

hypertext [Marshall and Shipman, 1993], biological taxonomy and linguistics [Nürnberg, 

et. al, 1997]. In such domains, certain patterns in structures are developed from primitive 

elements and are used to represent relevant information [Jordan, et. al., 1989]. 

b) Hypermedia as a Structural Computing Paradigm 

Hypertext and hypermedia are commonly thought of as databases that allow the 

user to navigate to one item of information from another item. They are conceived of as a 

network of nodes and links where nodes store information and links provide a cross- 

reference. Links are thought of by many as merely providing a means of transport that can 

be activated to allow the user to view the information stored in the connected node. 

[Shneiderman and Kearsley, 1989] 

This definition is limiting. It ignores the information that is created by analysts and 

that can be represented and stored by linking nodes together. The chemical properties of 



water differ from those of unbound hydrogen and oxygen atoms. Similarly, structures 

created in hypermedia provide different information than the collection of nodes that form 

a subset of the building blocks used. The results of a domain specific analysis can produce 

much deeper knowledge than the individual nodes could ever represent. 

Hypertext systems through their flexibility offer significant advantages in working 

with structures. Nodes and links can be used to create any conceivable structures when 

typing is not imposed [Nelson, 1992]. The addition of types can provide constraints to the 

structures preventing those that are not acceptable and enriching the information presented 

by those that are created. Flexible systems that support both ideas have also been 

proposed and developed. Recognition is given to the idea that in the initial stages of 

analysis, types may not be known, but that later strong typing of links and nodes may be of 

use to add additional information [Haake, et. al., 1994]. This flexibility can be realized by 

defining all object types in a system to be subtypes of a universal type. This can be done in 

the Schemas created through the framework presented in this thesis. When this is done, a 

process of refinement in which general types are replaced by subtypes that are more 

specific can be employed. 

Structural analysis of hypertext has been used to assist the user in navigation. By 

looking at metrics regarding the compactness of clusters of nodes, algorithms can suggest 

where aggregation relationships occur within a hypertext. The analysis ignores the 

contents of the nodes, as well as any possible typing of nodes and links, focusing instead 

on the numbers of links coming into and out of the nodes and comparing these numbers 

with the mean values of these figures for all nodes in the hypertext. Improvements in 

clustering are made by looking at the strongly connected components and biconnected 

components. The result of the algorithm is a tree of clusters. [Botafogo and Shneiderman, 

1991] 

2.   Open Hypermedia 

From 1987 to 1991 researchers noted that the hypertext systems of the time did 

not support the needs of collaborative work groups and that they could not be integrated 



into the computing environments being used in large enterprises [Halasz, 1987] [Malcolm, 

et. al, 1991]. Requirements were found for hypermedia systems that were not being 

addressed. These included: 

• Interoperability to access and link information across arbitrary platforms, 

applications, and data sources. 

• Link and node attributes to record who made a link, what the permissions are 

for the particular link or node and other management information. 

• Link anchors that allow attachment to the exact data desired. 

• Link types to provide more information about the meaning of a particular link 

and what functions the link is intended to support. 

• Public and private links to support collaborative environments. 

• Templates for automating routine analysis tasks. 

• Navigational aids that can act as filters and supply powerful querying 

mechanisms. 

• Configuration control so that information of importance in an analysis effort 

can be developed and managed in hypertext. 

To address these requirements, open hypermedia systems evolved. Open 

hypermedia systems have been denned as those that exhibit the following characteristics 

[Davis, et. al., 1992]: 

• A system that does not impose any markup on the data. By marking up data in 

order to create hyperlinks, the data is changed making it inaccessible to 

systems that cannot handle the markup. 

• A system that can be integrated with any tool that runs under the host 

operating system. This can be extended to mean a system that can be 

integrated with distributed object environments. 

• A system in which data and processes may be distributed across a network, and 

across hardware platforms. 

• A system in which there is no artificial distinction between readers and authors. 

This is quite important for systems supporting analysis. 

• A system to which new functionality can be easily added. 



Since analysts are both readers and authors of node content and links, these characteristics 

are vital in a hypermedia system intended to support analysis. Likewise, the ability to link 

objects without changing them is critical. The information being linked together by the 

analysts may be coming from other applications and databases with which the hypermedia 

system has been integrated. These applications will not understand changes imposed on 

the data in order to support linking. The links must be separated from the content. This is 

the basic premise of open hypermedia systems and has been demonstrated in research 

systems such as Microcosm TNG [Goose, et. al., 1995,1997]. 

3.   Rich Hypermedia 

Rich Hypermedia systems add attribute information to the structural components 

of the hypermedia. Links and nodes are classified by type and amplifying meta-data may 

be added to them [Osterbye and Normark, 1994]. Topological constraints may be 

imposed on the elements of the hypertext representing the business rules of the domain. 

An example of a constraint that may be employed in requirements engineering (as 

described in Chapter VI) restricts requirement dependency to issues rather than allowing a 

dependency link to criticisms. This implies that user feedback must be analyzed prior to 

affecting the body of requirements, allowing alternative selection to occur. One major 

limitation in agents cited in [Shneiderman and Kearsley, 1989] is that they cannot infer 

information about links other than the fact that there is a connection between two nodes. 

Rich Hypermedia allows more of this information to be easily found as it is stored as part 

of the links and nodes themselves. 

Rich hypermedia systems are usually found in applications targeting specific 

domains. Therefore, the meta-data can be deduced through domain analysis. Examples of 

domains targeted for rich hypermedia to date are software engineering [Osterbye and 

Normark, 1994] [Garg and Scacchi, 1987] and argumentation [Conklin and Begeman, 

1987]. 

Analysis is often performed in domains where information is known that can be 

used to create a rich hypertext. The Schemas found in the model in Chapter III reflect this 

10 



idea. However, analysis often uncovers situations not previously imagined. For this 

reason the HyperObject Processing Environment (HOPE) model presented in this thesis 

allows the schema to be enhanced without changes to the code or having a negative effect 

on the hypermedia. It is also possible for the author of the schema to include an untyped 

component and untyped link for all others to be derived from. This allows all rules to be 

broken if necessary, while still providing rich information when possible. This can be 

accomplished since components and links that act as though they were outside the schema 

are actually created from classes at a higher level of abstraction. Since class membership 

can be queried, agents can determine whether or not such a situation has occurred. 

4.   Spatial Hypermedia 

Structure does not necessarily require explicit links between pieces of information 

in order to exist. Links are the expression of interconnection. However, interconnection 

can be expressed through spatial structure. One benefit of a spatial representation of 

structure is that ambiguity or uncertainty can be represented in this fashion. If hypermedia 

structures are represented by nodes literally being near other nodes for which there exists a 

relationship, then all nodes are to a greater or lesser extent near to all other nodes. 

[Marshall and Shipman, 1993] 

VIKI is a tool for organizing information. Collections of information can be 

created by placing nodes within nodes. Nodes are also placed into groupings that 

correspond to a common relationship, partitioning the information space. [Marshall and 

Shipman, 1997] 

This approach, while useful in the experiments done in [Marshall and Shipman, 

1997], would not work well in the complex analytical space of software engineering or 

command and control. These would require n-dimensional spaces, and the number of 

relationship types (i.e., n) can be huge. Also, while [Marshall and Shipman, 1997] allowed 

elements to repetitively appear in the spaces, with a large number of relationships, this 

could clearly get out of hand in a tool using spatiality for visualization. 

11 



5.   The Dexter Hypertext Reference Model 

The Dexter Hypertext Reference Model (Dexter), was developed to provide a 

basis for comparison among hypermedia systems, and to provide a common foundation on 

which to standardize for interoperable exchange [Halasz and Schwartz, 1994]. Many 

authors make the effort to demonstrate how their architectures map to Dexter. By doing 

so, hypertext researchers have labeled this as an extremely important model. 

The Dexter model defines hypertext systems in terms of a three-layer architecture 

with well-defined interfaces between the layers. These layers are the within-component, 

storage, and run-time layers as shown in the following figure. 

Run-time Layer 
Presentation of the hypertext; user interaction; dynamics  

Presentation Specifications 

Storage Layer 
a 'database' containing a network of nodes and links 

Anchoring 

Within-Component Layer 
the content/structure inside the nodes 

Figure 2.1 Layers of the Dexter Hypertext Reference Model [Halasz and Schwartz, 1994] 

The focus of the model is the storage layer and the two interface layers. The 

storage layer provides the node and link structure that defines hypertext as being a unique 

architecture. The components of this layer are treated as generic containers. The contents 

are ignored and are handled in the within-component layer. The interface between the 

storage and within-component layers is critical to the model however. It is here that the 

means for addressing locations or items within the content of individual components is 

handled. This is called anchoring. In the case of pure text components, links are not only 

available between components, but between spans of characters.   Similar spans can be 

12 



defined for most media (e.g., spans of video). Likewise, the interface between the storage 

layer and the run-time layer is important. Through presentation specifications, information 

about how a component should be presented to a user or to an application is defined. 

Multiple presentation specifications can be used to allow components to appear in 

different manners depending on who arrived at that component and by what link. [Halasz 

and Schwartz, 1994] [Gronbaek and Trigg, 1994] 

For hyperobjects as described in this document, it will be shown that anchors and 

presentation specifications can be handled through the same mechanism. The objects 

being linked together in the following chapters are not simple text files or other display 

media. They represent aggregate objects from one or more databases, as in the case of an 

issue, requirement, or diagnosis. Therefore, spans of characters do not always provide an 

appropriate anchor for links. Individual fields need to be addressed, and in some cases, 

spans of characters, or other objects, found within a field. Since information about objects 

are always received through methods, anchors and presentation specifications are defined 

through object-oriented design features utilizing methods and their parameters. Design 

patterns are used that allow each object class to provide a different set of methods to 

access its data, while not requiring clients to know what type of object is being linked to in 

advance. 

The Dexter reference model while being the most notable model in the field has 

shortcomings. Despite the stated purpose of allowing interchange of hypertext, limitations 

have been found. Interchange of hypertext can be accomplished in two basic ways. First, 

hypertext can be exchanged between hypertext systems. Dexter has been shown to 

support this approach. A second approach has been called hypermedia-in-the-large. This 

approach is necessary for large digital libraries or engineering enterprises. It provides a 

framework for allowing all information in a wide-area network to be utilized with 

hypermedia applications. Rather than provide a single hypertext system as described for 

the Dexter model, a link service is provided. Applications that know how to use the link 

service can access and create hypermedia information. The implication is that a data 

model for hypertext cannot be assumed. Dexter has not been shown to be successful in 

supporting hypermedia-in-the-large [Leggett and Schnase, 1994] . 
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In the HOPE architecture a linkable interface definition is used to allow any 

application or service that implements the interface to provide or use link services. The 

basic structure of Dexter is preserved, but the underlying implementation assumption of 

using a firm data model is replaced with the option to have components and links be built 

by implementing interfaces rather than inheriting implementation [Coad and Mayfield, 

1996]. 

6.   Graph Models, Views and Object Retrieval 

Unstructured hypermedia models have not been seen as suitable for capturing the 

knowledge needed for many applications. The result is extra cognitive overhead for both 

the author and the reader. The author must expend effort in choosing link structures that 

will prevent the reader from getting lost, and often the reader must choose a path carefully 

for the same purpose. As a result, graph-based models that incorporate the notion of 

domain modeling have been introduced. The data modeling aspects, similar to those used 

by database developers, keep the information consistent with the users frame of reference. 

Graph models provide a natural way to model associations that form in hypermedia 

systems. The combination has been used by several researchers. [Lucarella, et. al., 1993] 

a)       Multimedia Object Retrieval Environment (MORE) 

MORE uses just such a graph model [Lucarella and Zanzi, 1996]. The model of 

this system's architecture is defined using the four-tuple M = (Z O, Jf S?). The 

conceptual schema I is denned by the five-tuple Z = (C, T, A, &, % itself. The 

conceptual schema is the domain definition for the particular multimedia system. The 

individual elements of these tuples are defined as follows: 

• C is a finite set of class names. 

• T is a finite set of primitive type names that are built into the multimedia 

system. V(t) is the set of values associated with the set where / e T. 

• A is a finite set of attribute names.   Attributes may be simple or complex. 

Simple attributes have as their domains a type t e T. Complex attributes have 

14 



classes c e C as their domains. The schema defines attributes as being either 

single or multiple in order to represent the cardinality of the relationships. 

However this really needs to be a part of the property relationship defined 

below. Regardless, the mathematics of the sets and graphs does not change for 

either MORE or HOPE. It is also not necessarily appropriate in all hypermedia 

systems to provide such a constraint on the attributes. If such constraints are 

truly needed both models may need to be upgraded. 

• &>c CxA x(C uT)isthe property relationship. If (ch a, cß e &>, then c, has 

the complex attribute a, relating it to class Cj. 

• /c C x C is the inheritance partial ordering relationship. If (cu c) e ^fthen 

c, is a subclass of c,-. 

• O is the set of instances of objects created within the system. Each object 

belongs to one of the classes c e C. 

• J^c- O x C is the instantiation relationship. If (o, c) e. /then o is an object of 

class c. 

• S?cO xA x(0 u V(T)) is the link relationship. If (o,. a. oj e^then o, has 

the attribute a with the value o}. This is only true if either the classes for the 

two objects were related with the attribute a, or the property was inherited 

from ancestral classes. 

Graphs are defined for both the schema and the multimedia information system. Each of 

the graphs is defined as a tuple consisting of a set of nodes and a set of edges. The graph 

for the schema has for its nodes the union of the classes and types sets (C u T). The 

edges are a union of the inheritance and property relationships. Therefore, nodes can be 

connected by an edge either if they are related by virtue of an attribute or if one class is a 

subclass of the other. The graph for Mhas nodes consisting of the object instances of O 

and the values of the primitive types that are used as attributes for the objects (i.e., V(T)). 

The Edges of Mare the link relationship triples defined above. 

This model serves as a starting point for the architecture defined in this thesis. 

HOPE generalizes the graph model to a hypergraph model and provides greater value to 

the links in the graph structures by making them classes with instances as well.  By doing 
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this, particular instances of a relationship can be created and retrieved, or included and 

excluded from an overview map of the hypergraph. Additionally, abstraction is used to 

greater benefit both for component nodes and links by filtering out simple attributes that 

are not relevant to the level of abstraction being viewed. 

b) Nested Context Model 

Other models exist that are based on graph structures. These models do not 

extend to the analysis patterns described in Chapter I as well as that for MORE. The 

presentation algorithms are however still interesting and can provide ideas for HOPE 

algorithms. One such model is the Nested Context Model [Casanova, et. al., 1991]. 

Here, the model is quite simple with a set of nodes (N) and set of links (Z). There are two 

basic types of nodes, context nodes and terminal nodes. Terminal nodes are similar to the 

primitive types in the MORE model. Context nodes group sets of terminal and context 

nodes through relationships identified by links. A node may be related to more than one 

context node, thus the result is a directed graph, where every link is a unidirectional edge 

and is an attribute of one context node. To have bi-directional links, both nodes would 

have opposing links defined. This is similar to the property relationship of MORE, 

however, MORE does not view the link as being contained in a node, nor the feature that 

context nodes contain the nodes that are connected to them by links. 

Therefore, the system is divided into multiple hyperdocuments and a particular 

node can be contained in any number of them. This creates a hierarchical description of 

the information where each context node of a particular level is a root, though the root 

may be a lower level context node in a hierarchy defined by another root and vice versa. 

c) HYDESIGN 

The Dexter Hypertext Reference model described above requires the ability to 

handle composite links and components. HYDESIGN [Marmann and Schlageter, 1992] is 

one of the few models to successfully achieve this. The data model for HYDESIGN 

follows an object-oriented class hierarchy. The figure below (drawn using Unified 

Modeling Language [Rational, 1997]) gives a top level view of the model. Atomic nodes 

compare to the primitive types of MORE and HOPE.   One of the primary differences is 
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that reference nodes may be created allowing more than one component to share the same 

content. This is not infeasible in the set-based architectures of MORE and the extension 

to HOPE, but is not currently allowed in either. 

SHG 

/ 
DRG 

HLink 

Set 

Hierarchy Sequence 

SLink 

Figure 2.2 HYDESIGN Class Hierarchy [Marmann and Schlageter, 1992] 

The most interesting difference among the models from the standpoint of analysis 

systems is the addition of aggregate links. The extensions to MORE built into HOPE 

allow for link abstractions. There are three types of aggregate links in HYDESIGN. The 

first is the g-link or general aggregate link. G-links define directed rooted graphs. When 

creating g-links, three conditions must be met: 

• Source and target node must be of the appropriate types. 

• There are no link conflicts with any other aggregate links. 

• The resulting network is a directed rooted graph. All nodes are reachable from 

the root. 

When a g-link is deleted, the system must delete every node that is no longer reachable 

from the root. 
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The two other classes of aggregate links are h-links (hierarchical links), and s-links 

(sequential links). Hierarchical links are similar to g-links except that they form directed 

rooted trees instead of directed rooted graphs. Sequential links build sequences to define 

particular paths through multimedia resources. These sequences can then be treated as a 

single unit. One basic restriction applies to aggregate links. No node may be part of more 

than one aggregate. 

SBL nodes are another interesting extension on the idea of an aggregate. These 

are high level nodes with all the features of simpler nodes but with three additional 

properties, that of structure, behavior, and locality. Structure determines the way nodes 

and links are connected within the SBL node. Behavior determines the way nodes and 

links react to SBL oriented operations. Locality refers to the way that SBL-nodes can be 

used to define workspaces or local environments through aggregation. An SBL-node may 

define a private workspace for an analyst, or a the global workspace (which the private 

SBL may be a part of). 

The addition of aggregates similar to those in HYDESIGN are a likely 

continuation of the architecture development described in this thesis. However the 

concept of perspective and adequately determining the level of abstraction to show the 

user will be more complicated with these features. HYDESIGN uses a different concept 

for what are termed views. Through the virtual deletion of certain aggregate nodes and 

the concentration on particular localities, areas of the hypermedia are not visible to the 

user. This is a very different approach from perspectives and the abstraction filtering 

proposed in this thesis. The semantics of the creation and deletion rules of aggregate links 

must also be compared to actions taken in analysis to determine if this is an appropriate 

approach for analysis support systems. However it is clear that the use of aggregate links 

and nodes could be used to model the hypergraph structures described in [Luqi, et. al., 

1994] and [Luqi and Goguen, 1997]. 
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B. USE OF HYPERMEDIA TO SUPPORT ANALYSIS 

1.   Argumentation 

One type of analysis system that has been used for research into hypermedia 

systems has been argumentation support systems.   The most notable of these is gIBIS 

[Conklin and Begeman, 1987].   Here a hypermedia system was established with a firm 

schema of the sort that can be developed in MORE and HOPE.    The schema is 

represented by the figure below. 

Generalizes or Specializes 

Figure 2.3 Schema for IBIS. 

The system (gIBIS) includes capabilities for browsing, context sensitive menus to 

aid users in making legal moves, searches, and multi-user support. There is no support for 

perspectives, nor for extending the schema. The idea behind gIBIS is strict adherence to a 

particular rhetorical style. The lack of perspectives and abstraction however leads to a 

problem with scaling the system up to many nodes as recognized in [Conklin and 

Begeman, 1987]. The lack of schema extension was noted in that there were times when a 

need for a "meta-discussion" was found. New concepts were handled as annotations 

rather than expanding the schema. 
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Others have found weaknesses in the approaches taken. The need for guidance to 

the analyst and the definition of particular structure patterns representing certain types of 

arguments was noted in [Streitz, et. al., 1989]. The need for particular activity spaces was 

recognized. The SEPIA system includes: 

• Planning Spaces: This space is set up to allow coordination of the entire 

discussion. Posting the initial questions and establishing the structures for 

participants to respond to is among the capabilities supported in this space. 

• Content Spaces: This forms space in which the user accesses content 

concerning the domain and begins to build a semantic structure of subject. 

• Argumentation Spaces: This serves as a medium for the discussion of the 

questions to be solved. It is structured as a collection of nodes and links either 

through a schema as from gIBIS or through a schema representing other 

argumentation structures. 

• Rhetorical Spaces: This is a private space that allows the author to structure 

the arguments that are to be presented in the argumentation spaces. Active 

applications that assist the author in constructing structures representing 

particular strategies. 

These aspects of SEPIA are useful for requirements engineering and other analysis 

activities. HOPE allows multiple workspaces through the existence of multiple 

hypermedia structures within the storage layer of the system. The usefulness of 

applications to guide the user through the creation of structures is also recognized in the 

HOPE architecture through the allowance of run-time applications that can manipulate 

information using storage layer interfaces. 

2.   Software Engineering 

Software engineering has been identified as an activity that can be supported by 

hypermedia systems at least since 1987, in the Intelligent Software Hypertext System (I- 

SHYS) [Garg and Scacchi, 1987]. The system is based around the Documents Integration 

Facility (DIF) which manages software products throughout a systems lifecycle, denning 
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the products through a series of forms and templates. I-SHYS allows active processes to 

aid in the software tasks through the knowledge that products relate to each other in a 

known manner. Agents then can assist analysts in their tasks. 

The approach taken in I-SHYS is similar to that described in Chapter VI of this 

thesis. The application of the HOPE architecture to requirements engineering is done by 

mapping out a schema that describes the interrelation of artifacts and tasks in the 

engineering process. Simple tools are provided to allow user to manipulate the structures. 

However, more intelligent tools can perform task automatically and in support of human 

effort by exploiting the same interfaces. 

I-SHYS also goes further than is demonstrated here in integrating content related 

tools such as a software engineer might use without a hypertext system. However, the 

CAPS environment described in Chapter VI, into which this model is meant to be 

integrated provides the same capabilities. 

The I-SHYS work demonstrates the usefulness of a rich hypertext structure that 

allows autonomous agents to obtain the information needed to provide assistance to the 

analyst. The capabilities shown in I-SHYS, gIBIS, and SEPIA would not be possible 

without a schema illustrating the component and association types of the analysis process 

at hand. 
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III.      THE MODEL 

A. CONCEPTUAL SCHEMA 

The model presented here for a HyperObject Processing Environment (HOPE) is 

strongly based on the model used in the Multimedia Object Retrieval Environment 

(MORE) [Lucarella, et. al., 1993][Lucarella and Zanzi, 1996]. It has been extended to 

describe a hypergraph rather than a directed graph. This permits a closer mapping to the 

Dexter model than MORE would achieve. The areas lacking in MORE relate to the 

requirement in Dexter for bi-directional and n-ary links. In addition, Dexter requires the 

ability to link to links rather than simply to component nodes. 

The primary means by which this is accomplished is through the addition of the 

Link class. Nodes are distinguished as being component nodes (non-link nodes) or link 

nodes. Links and components become subclasses of a graph's node class. Now edges 

leaving component nodes do not go directly to other components but are connected to 

links. Likewise, links can have edges to other links. In this way, multiple components on 

either end of a link can be connected together and links can be connected to links. This 

change to the model requires that component nodes of the hypergraph be considered 

adjacent if there are no component nodes between them. The definition of weakly 

connected is likewise affected. A new term, "mildly connected" is also introduced as a 

consequence of this model. 

Another change made to the model is that all classes have a common ancestor 

called Object. This is done in the same sense that Java classes are all derived from the 

class Object [Arnold and Gosling, 1996]. This allows all classes, even those not 

predefined in the schema to be connected using any that does not have a restriction 

limiting connections to a particular subset of classes. This allows the domain extending 

capability described in the introduction. 

Definition 1. The conceptual schema I is defined as the tuple 

S=(C,T,A,^Xrf), 
where: 
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C is a finite set of node classes; each class c e C denotes a structure (in terms 

of attributes) and an extension (the collection of objects that have this 

structure). One element of C is the Link class. In addition, all classes are 

derived from a common ancestor known as Object. This allows the domain- 

extending behavior described above and in the introduction. 

7 is a finite set of content types. These include the types of the implementation 

language, and any other classes defined solely in the within content layer. If 

the type represents content, it is referenced either by a stored query to a 

database, is referenced in a file-system (e.g., using a path), or references a 

universal resource locator (URL) in the World Wide Web. The difference 

between types and classes are that instances of types are not linked to multiple 

nodes in the hypergraph. They form simple attributes or content of nodes. 

Each t eT denotes the type of a primitive object, and V(t) is the set of values 

possible for that type. 

A is a finite set of attributes. Attributes are functions defined on classes and 

may be simple or complex. The range of a simple attribute is a basic type t e T 

and the range of a complex attribute is a class c e C. Attributes with multiple 

values (Am) are distinguished from those that are single-valued (As). A = As u 

J°c (C x A x C) u (C x A x T) is the property relationship. C' is defined as 

follows: c' eC ->c' ^C. Here is a significant difference from MORE. The 

property relation allows n-ary links between subsets of C and unary links 

between classes and types. If (c,', a, c}') e 30, then the elements of c,' have the 

attribute a, having as the range the classes in c/. Note that this a will be 

mapped to a particular link class and is therefore explicitly associated with the 

link class. If more than one class is contained within c' then this indicates that 

this relationship is only valid when at least one instance of each class is present 

in the relationship. Later in the definition of a hyperobject multimedia system, 

it will be shown that as long as the relationship is defined for each class 

individually, that multiple objects of different classes may participate in such an 
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n-ary relationship without this requirement. Note also that (ct', a, c/) implies a 

relationship from elements ofc,' to elements ofc/. If fc/, a, c/) e 3d as well, 

than the relationship can be considered to be bi-directional. Non-directional 

relationships are modeled in the same way as bi-directional with the Link class 

associated by £? defined below having an attribute specifying how to 

characterize the relationship. 

• ^c C x C is the inheritance partial ordering relationship. If (cb c) e JTthen 

the class c, is a subclass ofc, and inherits attributes. 

• j^c A x C* where C* c C contains the link class and all of its subclasses. 

This is an onto relationship such that if (a, c,*) e jAhen a is represented by 

linking classes using the link c,*. This set serves to map associations to the link 

classes that represent them. 

Definition 2. Given I, the conceptual schema hypergraph is a hypergraph 

H(Z) = (N, E), 

where: 

• N = C u T is the set of nodes. Nodes from C contain the components and 

links of the hypermedia, while those from T contain the primitive types used by 

component content. For each c e C, where c 0 C* (i.e., component nodes), 

there is a rectangular-shaped node labeled c. For each t e T, there is an oval- 

shaped node labeled t. For those c e C* (i.e., link nodes) the node is 

represented by a line segment. One or more non-link nodes will be connected 

by edges to either end of the line segment. One or more other link nodes will 

be connected to a midpoint of the line segment by an edge as well. 

• £ is the set of edges. For each (cb cß eH there is an edge (shown as a bolder 

line than other edges within the user interface) connecting c, to c,. This edge is 

directed and has an arrow on the side of the parent class. For each (ct', a, c/) 

e ^there is a link node line segment labeled with a, where the link node is of 

type ct* and (a, ct*) e M There are edges from each element ofc,' to the first 

endpoint of the link node, and edges from each element ofc,-' to the second. 

As mentioned in the background research, Dexter based systems can have links 
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that are to, from, bi-directional, and non-directional.   If a link is to, then the 

arrows of the edges to the first endpoint will point back towards the elements 

of Ci'.   If a link is from, then arrows of the edges connecting to the second 

endpoint will point to elements of Cj'.  Edges connected to bi-directional links 

will always have arrows pointing back to all of the non-link nodes, and edges 

to non-directional links will not have any arrows.  Edges alone connect nodes 

to types. Types do not connect to links. These edges are always unidirectional 

and are presented just as in MORE, as arrows pointing to the type. 

These definitions are more complex than those used in MORE [Lucarella and 

Zanzi, 1996].  The added features implement the characteristics of the hypergraph rather 

than a directed graph.   In addition, these definitions give links an equal status with the 

classes/nodes representing content. This is a significant improvement over most models in 

that filtering, searching, and navigation can use links as primary elements rather than 

merely including them if nodes that they connect are present.  As presented earlier, links 

are the value-added information of the storage layer in a Dexter-based hypermedia system. 

It is in this realm that analysts work. 

B. MULTIMEDIA INFORMATION SYSTEM 

The conceptual schema and the conceptual schema graph defined above define the 

class structure of the hypergraph object model for the system being developed. To obtain 

the object model, the relationships between classes and their instances as well as between 

instantiated objects must be defined. The class model illustrates what connections can be 

made, while the object model shows what links and attribute values are actually present 

given the state of the user's analysis. 

Definition 3. The hyperobject multimedia information system (HOMIS) M is 

defined as the tuple 

M=(I, 0,,JfJ?) 

where: 

•    27 is the conceptual schema defined above. 
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• O is the set of objects stored into the system. 

• J*c O x C is the instantiation relationship. Each object o e O is an instance of 

a class c € C. Note again that links are members of a class derived from the 

class Link and ultimately from Object. This means that actual links are 

themselves instances and can be treated on an equal footing with other classes 

within user interaction models. 

• JSfc (O' x 0(A) x O') u (O x A x V(T)) is the link relationship. Paralleling 

the property relationship, sets of objects (O' is defined aso' eO'^o'cO) 

can be linked to, from, bi-directional, or without direction. 0(A) is the set of 

instances that represent links. If (ot', 0(a), o/) e _^then the objects within 0/ 

have been linked to the elements in 0/ with a link relating to an instance of the 

class bound to attribute a'msuf.lf (o, a, V(t)) then o has the attribute a with the 

value V(t). (Oi\ a, o/) e _Pcan occur if and only if one of the following 

conditions holds: 

1. For all elements of o,' and 0/, the elements are instances of some 

classes c, e ct' and q e c/ such that (c,', O(a), c/) e &. This is valid 

only if Ci' and c/ are sets with single elements only, or if all elements 

from these sets have object instances in o,' and o,' respectively. 

2. For all elements of ot' and 0/, the elements are instances of some 

classes c, e ct' and q e c/ such that (ct, c0 e J%ck e ck' and (ck\ 

0(a),Cj) e&. 

3. For all elements of or' and 0/, the elements are instances of some 

classes c, e ct' and c, e Cj' such that (cß c0 e J%ck e ck' and (ct', 0(a), 

ck) e&. 

The conditions above mean that objects can only be related if their classes have 

been denned as being related in the same way either directly or through the inheritance 

relationship. These conditions do allow an n-ary relationship to be built up from several 

unary or smaller n-ary relationships. As stated earlier, these smaller n-ary relationships 

must be satisfied in whole or they are not valid. These rules can be relaxed by a particular 
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system through the use of Object and Link in the schema.  This feature can essentially be 

turned on and off if desired. 

Definition 4. Given the HOMIS M, an instance hypergraph is a hypergraph 

H(M) = (N, E), 

where: 

• N = O u V(T) is the set of nodes. Nodes represent components in the Dexter 

model [Halasz and Schwartz, 1994] using rectangles, links using line segments, 

or values using ovals. These are generated from the schema using the 

instantiation relationship. 

• E is the set of edges connecting component objects to link objects, link objects 

to link objects, and objects of any sort to values. For each fo,', 0(a), of) u (o, 

a, V(t)) e „Pthere are edges connecting the nodes, labeled with a and with 

arrows based on the direction of the relationship. If a link is to, then the 

arrows of the edges to the first endpoint will point back towards the elements 

of of If a link is from, then arrows of the edges connecting to the second 

endpoint will point to elements of of Edges connected to bi-directional links 

will always have arrows pointing back to the non-link nodes, and edges to non- 

directional links will not have any arrows. Edges alone connect nodes to 

types. Types do not connect to links. These edges are always unidirectional 

and are presented as arrows pointing to the type. 

C. RELATED DEFINITIONS 

Decisions on what to present to the user are going to depend on concepts relating 

whether or not particular nodes are connected in a sub-hypergraph created with a 

particular criterion. Since links have been denned as nodes in order to achieve n-ary links 

and link-to-link associations, new definitions with regard to adjacency and connectedness 

are needed. 

Definition 5. Two component (non-link) nodes are adjacent to one another iff, 

there is a path between them that does not include any other non-link nodes.   Two link 
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nodes are adjacent if they are directly connected by a single edge. Link and component 

nodes are adjacent to each other if directly connected by a single edge. 

This definition allows us to treat the link as though it were an edge in a 

hypergraph, yet continue to give it the same treatment as other objects with regard to 

searches, linkages, and filters. It is still useful at times to consider component nodes as 

being directly related if there are only links between them. 

There could be multiple links between them but no intervening nodes. In many 

cases, this is not a concern and adjacency as defined above is sufficient. However in other 

cases (e.g., annotation links that may be considered of less importance than other 

relationships), we may want to differentiate between those separated by a single link and 

those that can be connected through a variety of links (and perhaps a variety of links and 

nodes). For this purpose, the following definition is supplied. 

Definition 6. Two nodes (link or component) are mildly connected iff there is a 

path from one node to the other, but no path from one to the other can be created without 

adjacent links. 

Definition 7. A hypergraph is weakly connected iff by ignoring the direction of the 

edges, there exists a path from any node to any other node. 

D. ARCHITECTURE 

1.   Storage Layer Composition 

The architecture being proposed is a direct translation of the mathematical model 

described above fitted into the Dexter reference model. In designing an implementation of 

this architecture, several options have been found, but the architecture remains a 

description of the sets and tuples of the definitions above. The object model of this 

architecture is described in the OMT [Rumbaugh et. al., 1991] diagrams below. 
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Schema ObjectSet InstanceSet 

Figure 3.1 Storage Layer Composition 

The Dexter storage layer is built as containing zero to many HOMIS instances. 

Each HOMIS represents M = (I, O, Jf & ). The runtime layer must specify which 

hypergraph is being dealt with by specifying which HOMIS is being accessed. There can 

be multiple views of the HOMIS as well as will be described in the model for reader 

interaction. 

The Schema is also composed of sets as described in the model above and the 

diagram below. 

Schema 

ClassSet TypeSet AttribSet PropertySet InheritanceSet LinkAssocSet 

Figure 3.2 Schema Composition 

This architecture allows schemas to be built using a drawing tool in the run-time 

layer. The implication is that new schemas and therefore new HOMIS can be designed 

without additional code being produced. This is true provided that: 

1. TypeSet (7) contains all of the primitive types needed for the new hypermedia 

system.  If not, new code must be written will be to implement the additional 
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types. This includes the definition of new anchor types that are meaningful to 

the primitive type. The anchor indicates a method and offset (if any) to get to 

the content being tied to the component node. As the types are built up, new 

analysis systems can be rapidly created. 

2.  No new non-content attributes are required concerning the instances of the 

components and links. These are part of the tuples stored in the ObjectSet so 

the definition of the tuple class being used would need to be modified. 

The sets themselves need to contain strings, pairs, and triples.   The PropertySet 

contains two types of triples adding some complexity, though this can be implemented 

easily in polymorphic languages. 

Methods for the storage layer are listed in the following table. The initial 13 

methods are required to be consistent with the Dexter reference model [Halasz and 

Schwartz, 1994]. Those methods after are added due to the richer nature of the model for 

a HOMIS. Not only must inheritance be accounted for, but methods to manipulate the 

schema are provided. 

Storage Layer Methods 

CreateComponent  
CreateAtomicComponent 
CreateLinkComponent 

Creates a new component and adds it to the hypertext- 
Creates a new atomic component.      
Creates a new link. 

CreateCompositeComponent 

CreateNewComponent 

Creates a new composite component if the atomic 
components and the composite being created agree with 
the schema. 
Invoked from the run-type layer, and calls one of 
CreateAtomicComponent, CreateLinkComponent, or 
CreateCompositeComponent. 

DeleteComponent 

ModifyComponent 

Deletes a component,  ensuring that  any  links whose 
specifiers resolve to that component are removed. 
Modifies the non-content attributes (e.g., creation date) of 
a component while ensuring that its associated information 
remains unchanged, that its type (atom, link, or composite) 
remains unchanged, and that the resulting hypertext 
remains link consistent. 

GetComponent 

AttributeValue 

SetAttributeValue 

Returns   a  component   from   the   component's   unique 
identifier. 
Takes a component and an attribute, and returns the value 
of the attribute. This refers to the primitive type in the 
HOMIS model. The language between Dexter and MORE 
conflict. 
Takes a component identifier, a value of an attribute, and 
sets the value of the attribute.  
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AllAttributes Returns an enumeration of all the attribute values of the 
component passed to the method. 

LinksToAnchor Takes an anchor and its containing component, and returns 
the set of links that refer to the anchor. 

LinksTo Takes a hypertext and a component identifier and returns 
the identifiers of links resolving to that component. 

AddClass Adds a class to the schema. 
DeleteClass Deletes a class from the schema 
AddType Add a primitive type to the schema 
DeleteType Delete a primitive type from the schema 
AddAttribute Add an attribute to the schema. This can be either an 

attribute that links two classes together, or an attribute that 
links a class to a primitive type. 

DeleteAttribute Delete an attribute from the schema 
AddProperty Establishes that a link can exist among from a set of 

classes to another set of classes using an established 
attribute. Can also link an class to a primitive type using 
an established attribute. 

DeleteProperty 

Addlnheritance 
Deletelnheritance 
ListHOMIS 

Deletes a link between class sets or between a class and a 
type within the schema.   
Add an inheritance relationship from one class to another. 
Delete an inheritance relationship. 
Provide an enumeration of hypermedia systems kept within 
the storage layer.  

Table 3.1 Storage Layer Methods 

2.   Within Content Layer 

The within content layer is structured as a collection of primitives. These primitive 

types include those typically implemented in programming languages or their libraries 

(e.g., integer or string), and those that are unique to multimedia systems (e.g., mpeg or 

hypertext markup language). Objects for each of these primitives are written and 

containers are built for each. These containers and objects can understand the anchors 

being passed to them. When an object in this layer is passed an anchor, it returns an object 

of the expected type. This object can be utilized by presentation specification methods to 

display the contents for the node of a hypergraph. 
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E. BENEFIT SUMMARY FOR THE HOMIS MODEL 

There are several benefits of the HOMIS model over existing graph-based 

hypermedia system models. 

1.   Closer Mapping to Dexter 

The HOMIS model includes features that map to the Dexter Hypertext Reference 

Model [Halasz and Schwartz, 1994] that are not found in existing graph-based hypermedia 

system models (e.g., MORE [Lucarella and Zanzi, 1996]). 

Dexter calls for n-ary links, which are not possible in simple graph-based models. 

By extending the model to a hypergraph, n-ary links become feasible. Dexter's links must 

also be able to be attached directly to other links with no intervening components. This is 

contrary to the mathematics of graph-based models. However, by allowing links to be 

nodes themselves this becomes possible. HOMIS distinguishes between link nodes and 

component nodes in order to differentiate between content and associations to preserve 

the hypermedia feature of the architecture. 

The final improvement is the decoupling of content from the storage layer or 

hypermedia services themselves. MORE and others treat content the same as other 

attributes of component nodes. This is a common feature of object and graph based 

hypermedia systems that use data objects linked together rather than more traditional 

media objects (text, video, and audio). The result is a tight coupling between the content 

of the nodes and the hypermedia structures being created by the authors or analysts. 

Dexter is an open hypermedia architecture and thus allows attributes of components and 

links to be separated from the content being represented by the components. In this way 

immutable objects held within the within content layer of Dexter are not affected by the 

analyst's work. The analyst is truly adding valuable information exclusively through the 

authoring of links. 
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2. Less Discrimination Against Links 

If authors of hypermedia are adding value through the creation of links and not 

through the modification of the content referenced by the nodes, why is it that most 

search, navigation, and filtering methods act primarily against the attributes and content of 

components. By creating Link classes that are treated in a similar manner as component 

nodes, links are placed level with content in importance and in visibility. This model will 

assist in developing filtering, navigation, and search tools that focus on the links. Links 

can now have attributes and can be manipulated independently of the nodes they connect. 

However, the model still preserves the meaning of a link by tying links to associations that 

must exist between the nodes they connect. Similarly, research into structural computing 

may benefit from this model as the structures created through combinations of links and 

components are of more interest than the content referenced by nodes. 

3. Richer Modeling of Domains 

Some domains are more easily modeled using hypergraphs than graphs. This is 

true of software evolution [Luqi, et. al, 1994] and military planning. The lack of n-ary 

links and link-to-link connections does not prohibit the modeling of these undertakings. 

By adding placeholder components absent of meaningful content but connected to the 

necessary nodes, one can model the same information. These placeholder components 

must have rules associated with them that indicate how the relationships that they 

represent work. However, this approach adds complexity to the view provided to the 

user, and since under older models, components are the primary objects, adds clutter 

rather than meaning. By extending the graph model of hypertext to a hypergraph model, 

these domains are more cleanly and expressively defined. 

4. Use as a Framework 

The HOMIS model and architecture provides a means of building a storage layer 

that does not need new code for each instance of a hypermedia system.  Users can enter 
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Schemas to represent the analysis to be done. Only if new primitive types are employed 

must code be written. This is necessary since the storage layer must communicate with 

the within-content layer to retrieve data of the appropriate type. Presentation 

specifications for the type must also be created to provide methods for interacting with the 

data. 
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IV.      ANALYST TOOLS 

This chapter looks at the run-time layer operations affecting a HyperObject 

Multimedia Information System (HOMIS).  The HOMIS is manipulated through calls to 

the storage layer as defined in the last chapter.  The following operations are required by 

the Dexter Hypertext reference model [Halasz and Schwartz, 1994]. 

Run-Time Layer Operations 

OpenSession 
OpenComponent 

PresentComponent 

FollowLink 

NewComponent 
UnPresent 
Editlnstantiation 

RelizeEdits 

DeleteComponent 

CloseSession 

Creates a session for a given hypermedia. 
Opens a set of new instantiations on a given  set of 
components.  
Takes a specifier and a presentation specification and 
creates an instantiation for the associated component.  
Uses openComponents to present any components referred 
to by the "TO" specifiers of any links with anchors 
represented by a given link marker.  
Opens a new instantiation on a newly created component. 
Removes an instantiation  
Edits an instantiation. A call to realizeEdits is required to 
save the changes.  
Saves    an    instantiation's    editing    changes    to    the 
corresponding component by calling ModifyComponent. 
Deletes    the    component    associated    with    a    given 
instantiation.   Also removes any other instantiations for 
that component. 
Closes a given session.    Note that by default, pending 
changes to instantiations are not saved.       

Table 4.1 Dexter Run-time operations 

As with the storage layer, the HOPE model allows some operations in addition to 

these minimum requirements. While the model behind MORE [Lucarella and Zanzi, 1996] 

is geared towards the reading of a static hypermedia, the HOPE model is intended to 

support dynamic analysis. The operations described below represent the required set and 

those extensions believed needed to support analysts' use of hypermedia. Use cases 

supporting these operations defined for the software engineering domain are found in 

Appendix B. 
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A. OPEN AND CLOSE A SESSION 

The HyperObject Processing Environment (HOPE) can store multiple 

HyperObject Multimedia Systems (HOMIS) within its storage layer. Each HOMIS 

represents the information described by a single hypergraph. Therefore, the openSession 

operation of Dexter is implemented such that the particular HOMIS to be used is chosen 

from the storage layer. This can be done by providing a selection of HOMIS discovered 

using the listHOMIS method. A new session can also be created that defines a new 

HOMIS. 

Closing a session always prompts a user to save the modifications made to the 

HOMIS before ending. This operation calls the relizeEdits operation required of Dexter 

based systems. 

B. CREATE AND MODIFY THE SCHEMA 

This is not a capability required by the Dexter reference model. While typed links 

and components are supported, they are not required nor is there a requirement for a 

framework to be built that allows new schemas to be created without resorting to coding. 

However, manipulating the schema sets are no different than manipulating the instance 

sets. Actions in the graph view of the schema correspond to changes in the sets in the 

storage layer. Additionally, manipulating the schema for purposes of setting perspectives 

is merely an extension of the capability to draw and edit a schema. Many of the 

interactions that the user performs within HOPE are with the schema, making this an 

important run-time tool. 

C. ADD OR EDIT A COMPONENT NODE 

Not all component information will already exist. Though the premise of the 

architecture is that much of this information comes from outside the hypermedia 

architecture, some is clearly initiated by users of HOPE. In the case of requirements 

analysis discussed in the use cases and Chapter VI, users must enter criticisms and project 
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managers must enter demonstration plans. Editing is allowed only sometimes. For the 

most part HOPE considers component node content as immutable. Anchor logic in the 

within content layer controls whether write methods are available. Likewise, anchors can 

force new nodes to be created when information changes from underneath the system. 

This again stems from the notion that much of the information is controlled by other 

systems with which HOPE must integrate. Presentation specifications for components 

control the behavior concerning how the information is presented to and edited by the 

user. If the component's content is immutable, then the run-time application must actually 

"spawn" a new instance through the storage layer, making intelligent decisions as to what 

links to carry forward to the new version, and what type of links to make between the old 

and new versions. 

D. LINK NODES TOGETHER (INCLUDES DELETING OR MODIFYING A 
LINK) 

This is the basic representation of the analysts' effort. Run-time tools need to be in 

place to allow the user to graphically or through searches, create links between 

components, between links, and between components and links. Basic tools can 

graphically allow link creation. The tool can check to see what links are allowed between 

two items selected by querying the properties set of the HOMIS' schema {&). Task 

specific applications can help make links based on the actions taken by participants in the 

activity. 

An example is a criticism entry tool for requirements engineering (see Chapter VI). 

Such a tool can create criticism content, create a new component node, then create a link 

to the component node representing a user who has the same name or email address of the 

person who submitted the criticism. This can be done either with direct usage of a HOPE 

based system, or by an autonomous agent that acts upon receiving criticism content by 

electronic mail from the user. 
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E. VIEW AND FILTER THE HYPERGRAPH 

This subject is handled in depth in Chapter V. In Chapter VI it is shown that in 

any real analysis can quickly result in a hypergraph that cannot be displayed. Filtering the 

screen to see the information of use is important. Since a HOMIS has a schema as well as 

instance sets, the hypergraph shown to the user can be filtered both through choosing the 

types of content of interest as well as particular values of interest. 

F. EXAMINE A COMPONENT OR LINK NODE 

Examining a node allows one to view the contents or attributes of the node. In 

this model, such content is in the form of "simple" attributes, associations with primitive 

data elements found in the within content layer through anchors. Therefore, there is no 

one element that makes up the content of a node, but there may be any number of such 

attributes. Therefore, users examine attributes through selection of the attribute nodes in 

the hypergraph. The attributes shown are based on the perspective pattern being viewed. 

Instances of classes that extend other classes only display the attributes inherited from the 

level of abstraction selected for the particular perspective(this is described in more detail in 

Chapter V). 

G. FOLLOW A LINK 

Any run-time application that is working with a node can query the storage layer 

with the FoliowLink method. If c is the current node and c e X, the storage layer returns 

the set of links of the form 

(X,a,Y) 
where (X, a, Y) is an element of & Given that the HOPE model includes the concept of 

perspective, «£*can be filtered to include only those links that are present in an instance set 

s eS of the perspective P(n, S), described in Chapter V. 

Since a link node associates sets of nodes (where a node can be either a 

component or link), the application must choose which node to travel to.  This can be as 
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simple as presenting the list of nodes to a user for choice. Likewise, the application might 

be written to treat the set as an enumeration and provide all of the nodes to requestor 

either sequentially or simultaneously. Finally, the application may have an algorithm by 

which a subset of the nodes are chosen. 

H. FIND COMPONENT AND LINK NODES 

Searching for particular elements of a database is a common activity. As the 

hypermedia base is a form of database [Wiil and Leggett, 1997], it is not surprising that 

this would be common in HOPE as well. Most hypermedia systems support searching for 

component nodes. By treating links in the same manner as components, links can be the 

subject of searches as well. Link classes have instances, which can have attribute values, 

making them suitable targets for searches. 

Both kinds of nodes are typed in HOPE. As a result, searches look for instances 

of a particular class, associated with either: 

• Simple attributes of a particular primitive type holding a particular value 

• Complex attributes that have particular simple attribute values associated with 

them. 

It is also possible to fashion query capabilities that will use the navigation capabilities 

described above (FollowLink) to move from node to node that at least satisfy some 

particular navigation criteria in search of a target node that meets the actual search 

criteria. 

I.   DISTANCE AND COMPLEXITY MEASUREMENTS 

These capabilities are not usually discussed relative to hypermedia architectures. 

The need for this capability is suggested in the use cases on alternatives analysis in 

Appendix B. Two mechanical methods of comparing suggested alternative solutions to 

issues (as described in the schema for CAPS in Chapter VI > are presented in [Ibrahim, 

1996].   The first measures the scope of a proposed change b\ counting the number of 
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modules affected by the change, directly and indirectly. In a HOPE based system, this is 

done by travelling the affects links from an issue and counting the number of component 

nodes involved. This involves using the FollowLink interface to the storage layer. The 

second measurement is done by looking at the maximum distance that a module resides 

away from the issue being resolved. The method of implementing this measurement is the 

same as for the previous one. Following links, an application keeps count of the links 

traveled until a module no longer affects any others. 
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V.       INFORMATION RETRIEVAL 

A. READER'S GOAL 

The reader of hypermedia information has one basic goal in mind: to find the 

information needed to accomplish a particular task. This basic goal is independent of the 

nature of the reader. The reader could be human or an autonomous agent. The reader 

could be searching for information in order to make a decision that will only impact 

entities outside the systems automation boundary. Alternatively, the reader could be an 

analyst who once finding the information sought, will link it to another item, changing the 

contents of the system. 

Regardless, readers of hypermedia have two basic modes of information retrieval 

available to them, search and browsing. Often users will accomplish their tasks using 

some combination of these two methods. [Nielsen, 1990] 

Each of these methods has advantages and disadvantages. In order to be efficient, 

searching requires that a user understand: 

• a query language, 

• the structure of the information held within the system, 

• and, the particular goals of the query. 

The first two of these requirements poses the difficulty that the user is required to know 

too much about the implementation of the system. However, searching using a query can 

provide an immediate answer when a well-structured query is properly evaluated 

[Lucarella and Zanzi, 1996]. 

Browsing allows the user to view the contents of a component, then using links, 

decide upon another component to view. If the authors have created links that match the 

thought process needed to extract the information desired, this can proceed efficiently. 

The reader has no need for knowledge of the information structure or a query language. 

The user does not even need to know precisely what is being sought, merely be able to 

recognize when it has been found. However, if the links are not well suited to the problem 

being addressed, disorientation of the user results [Marmann and Schlageter, 1992]. 
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B. OVERVIEW DIAGRAMS 

Overview graphics can perform multiple functions. Since hypermedia systems are 

often used through browsing and navigation, overview graphics can provide a sense of 

what information is nearby and place the user's focus in context to the entire information 

base. In some systems, the reader can acquire information directly through the overview 

diagram. [Nielsen, 1995] [Tochtermann and Dittrich, 1992] 

HOPE based systems are intended to provide this capability. Since the analytical 

information being represented is provided by the linking of nodes together, seeing what 

information is connected provides a great deal of the information in the system. The 

overview diagram provides a view of the analysis being performed. It also provides the 

basis for graphical search capabilities described below. 

1.   Simple Hypergraph View 

Any graph based overview diagram is possible using the HOPE architecture. The 

primary view that is provided in the trial implementation is a simple display of the 

hypergraph. Later in this section the concept of perspective and filtering are discussed to 

show how this view is made more useful. At its simplest however, the view is provided a 

set of object instances and a set of links. From this a hypergraph is drawn following the 

convention in [Lucarella and Zanzi, 1996]. 

All component nodes (representing the elements of the set ObjectSet or O in the 

HOMIS) are drawn as rectangles. Attributes of the objects that refer to primitive types 

(or members of T) are drawn as ellipses. An edge with an arrowhead is drawn from the 

object to the node representing the value of the type. The edge is labeled with the 

attribute name. Links from one object to another are drawn as line segments. Each line 

segment has three attachment points, two on the ends and one in the middle. The point in 

the middle is for attaching edges to other links. The endpoints are for attaching edges to 

component nodes (representing the objects). Arrowheads are provided where direction is 

defined. An example diagram follows: 
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Figure 5.1 Overview Diagram Example 

Note that when the values V(t) are simple enough to show within the ellipse they are, 

while an identifier is shown otherwise. 

2.   Graphical Queries 

In MORE and HOPE, to specify classes of objects, the user interacts with the 

schema to select component or link nodes of interest. HOPE differs from MORE in that 

the level of abstraction can be chosen by the user. Attributes relating to the level of 

abstraction are the only ones displayed. Those from subclasses are hidden. 

To indicate instances that contain a particular value, the user again interacts with 

the schema (or more accurately with the perspective pattern described below). The user 

selects the simple attribute of the class and is given an input window to enter a value for 

the primitive type. Objects where V(t) equals that value can then be retrieved . This is 

shown in the following figure, where the criticism analysis perspective from Chapter VI is 
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being used to retrieve only criticisms posed by a user with the email address of 

dlange@nosc. mil. 

description 

Prototype       -version< 

email— 
Criticism 

i 

m ■ —poses-» 
criticizes 

Scenario 

organizatioc 

String 

Figure 5.2 Graphical Query 

Full Boolean statements can be described in this manner and used for simple object 

retrieval or to set filters as described below. None of this differs from [Lucarella and 

Zanzi, 1996]. The basic mode of information retrieval supported by MORE is to 

successively filter the information in this way until the information of interest is easily 

visible in the resulting perspective view. In this way, the user does not need to formulate 

the entire query based on knowledge of the schema. Results are accomplished by 

graphically filtering the information. It is easier for a user to recognize when successive 

filtering has resulted in the information required than it is for the user to formulate a 

suitable query without in depth knowledge of the entire schema. 

However, differences do exist between the MORE and HOPE models. The HOPE 

model allows two additional graphical capabilities. The first is filtering through 

abstraction. Since users and sponsors are both examples of people, they share certain 

attributes. Other attributes are unique to the specific type of people. A query where the 

class people is selected rather than users and sponsors would provide all of the same 

instances, but would only offer the common attributes for filtering. Where only users are 

truly of interest, this class may be chosen, hiding all of the sponsors and showing all of the 

users' attributes (those inherited as well as those that are unique). It is proposed here, but 

not proven, that this will enhance the ability of the user to find the information desired. A 

study of this would need to be conducted to determine if this is true.  Any query that can 
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be described through standard query languages can be created using perspective 

interaction. If a mistake is made in selecting levels of abstraction early in the successive 

filtering process, the query desired may not be possible. The user must go back to that 

stage and set a different perspective pattern or filter. 

The second difference is that links are classes in HOPE just as are component 

nodes. The analyst may select links for the purpose of establishing a perspective pattern. 

Likewise, links can have simple attributes and these may be used to filter the information. 

Given that HOPE is intended to provide service to analysts who are more interested in the 

association of information than the raw information itself, it is believed that this will be a 

significant improvement. 

C. PERSPECTIVE AND FILTERING 

The concept of perspective is defined in [Lucarella and Zanzi, 1996] as a means to 

focus the overview diagram on the component nodes of interest to the reader. Perspective 

is a form of data abstraction that provides the user the ability to select a particular portion 

of the schema that is of interest. Only object instances that conform to this schema subset 

are displayed to the user. Perspectives can be predefined and stored for later use. A 

software requirements analyst can use a perspective that focuses on user criticisms and the 

issues they represent (see schema in Chapter VI) while ignoring the connections between 

issues, software requirements, and design elements until ready to address issue solutions. 

The perspective is built by selecting nodes on the graph in MORE or in HOPE by selecting 

either nodes or links. 

Two changes are introduced in the perspective definition for HOPE. 

1. Abstraction is preserved in the perspective. In MORE, selection of an 

ancestral class implies selection of the descendants. This does not allow the 

user to set abstraction at appropriate levels for different pieces of information. 

In HOPE, ancestral class selection allows the objects of descendent classes to 

be displayed, but the attributes shown are based only on those inherited from 
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the selected class. In essence, aU objects are treated as though they were direct 

instances of the chosen class. 

2. The focus on component nodes is supplemented with a perspective based on 

the relationship function. In MORE, nodes are selected and links are included 

if they are associated with the nodes. In an analysis system, the perspective is 

just as likely to be based on the associations themselves. In this case, nodes 

are brought in if they are relevant to the associations. 

1.  Definition of Perspective 

Definition 8.  Given a HyperObject Multimedia Information System (HOMIS), a 

perspective P is defined as P(x, S), where: 

•    7t is the perspective pattern. The pattern is a weakly connected sub-hypergraph 

of the schema Tall of whose link nodes have edges attached to both endpoints. 

N(n) cN(E} denotes the subset of the schema nodes (classes, types, and links) 

included in the perspective.  E(x) c=E(Z) denotes the set of edges associated 

with the perspective. 

.    S is the set of object hypergraphs generated by the perspective hypergraph n 

through the instantiation relationship.  Given s e S. each node (component or 

link) o eN(s) is an instance of the corresponding node c e Sin) or (c, c') e 

JT' where AT' is the transitive closure of JTand c' e S< m.  I f c e N(n) then 

the type t e N(x) where (c, a, t) e & Otherwise. ÜV is the member of N(n), 

and objects of c are used only because of inheritance, then / t Sin) only if (c\ 

a,t) e& The edge (ob a, o) e E(s) iff the edge (c a ct> r Kim. 

Since links are given the same  standing as component  nodes in  HOPE, the link 

associations can be a selection criteria for perspectives as eas.lv as the- components can. 

The second portion of the definition hides primitive type attributes that are found in 

descendants of a selected class. This allows the objects of descendent classes to be treated 

as instances of the ancestor that was selected for the perspective. 
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2.  Filtering 

The purpose of a filter is to refine the view provided by a perspective to a subset of 

pattern instances. The user is allowed to choose which of the object instances (by 

attribute values) should be shown. The display is already limited to particular node (both 

component and link) types based on the perspective. As in previous sections, the basis for 

these definitions are [Lucarella and Zanzi, 1996]. The definitions are modified to account 

for the changes made to the model in support of hypergraphs, the Dexter Hypertext 

Reference Mode, and the need for more focus on links in support of analysis. 

Definition 9: Given a perspective P(n, S), a filter F is defined in terms of a set of 

selection conditions {C,, ..., CJ over the pattern. Let a, be an attribute of type t 

pertaining to a node (class) n, in the pattern TT, then C, represents a selection condition 

over the actual values of the corresponding object instances. The selection condition is a 

Boolean combination of simple expressions comparing two values a, and a,. 

The user interface for setting such a filter aUows the user to "click" on a node, then 

on the attribute to be tested. A window asking for a particular value and providing valid 

comparison operator choices is presented for the user to fill in. 

Consistent with the goals throughout this thesis, the objects being evaluated can be 

link objects as well as component objects. Link objects can also have attributes that can 

be compared. The semantics of such mixed queries work as well. Since the component 

and link nodes are tied (or associated) to each other by edges in the graph, they are treated 

just as all node objects are in [Lucarella and Zanzi, 1996]. Likewise, abstraction is 

supported by this approach. The only attributes that are made available to the user are 

those inherited from the classes chosen for the perspective. Therefore, the level of detail 

is maintained through the filter operation. 

Definition 10: Given a perspective P(n, S) and a filter F defined over P, a 

selection operation a returns a subset R <=S of pattern instances matching the filter: A 

pattern instance s matches the filter iff it satisfies all of the conditions C. 

Definition 11: Perspectives are compatible if they have the same pattern but 

different instance sets. 
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Compatible perspectives are used primarily in perspective operations. The primary 

example of this is in the overlay operation defined later. By knowing that the pattern (or 

subset of the schema graph) is identical, the operation can combine object instances that 

pass through different filters. This serves as a union operation on the instances alone and 

can only be done if the patterns are the same and therefore from compatible perspectives. 

The concept of perspective requires further research. The filters defined above 

only take into account the values of attributes with primitive types. However, attributes 

connecting to components and mildly connected to components containing particular 

content could work. In addition, filters that are based on attributes connecting targeted 

structures of sub-hypergraphs could be defined as well. 

Graphical searches work in the same way as filtering. A search is merely a filter 

that intends to allow through only those elements relating to the search criteria. In this 

case it is not for the purpose of reducing clutter in an overview diagram, but for returning 

particular components or links. 

3.   Other Operations on Perspectives 

Perspectives have the same form as schemas and are therefore visible through the 

same viewers. Likewise, perspectives can be further refined using perspective selection 

since as a legitimate schema, the operations on a schema are valid on the perspective. The 

following definitions provide the operations defined in [Lucarella and Zanzi, 1996] using 

the modified structures that support hypergraphs. 

Definition 12. Let Pl(m, SO andP2(n2, S2) be two perspectives, with m * n2 and 

N(xO n N(n2) * 0. A composition operation over the set of nodes N' = N((nO n N(m) 

generates the perspective Pfa S) = composition^,, P2) where: 

• n is the pattern that results from taking the unions of the nodes and the edges 

of the individual patterns. Therefore, N(TV) = N(m) utt(n2) and E(n) = E(itO 

UE(K2). 

.    S is the set of instances of the pattern n, created by finding instance sets such 

that if a node appears in both patterns the refer to the same object instance. 
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For all of the classes N' = N(nO n N(n2), two instances can only be part of the 

composition if they share the same object instances. 

The differences between the two models shows up here as in previous definitions. 

Nodes include "link nodes" in the HOPE model. Therefore, composition can occur on the 

relationships between component objects as well as the component objects themselves. 

The result is that composition continues to work with the links having a more significant 

role. Hypergraphs are also supported in this way. This also shows that having instances 

of links does not interfere with processing the hypermedia. 

Definition 13. Let PI(TT,, S,) and P2(n2, S2) be two compatible perspectives. This 

means that m = n2, but S} *S2. An operation overlay (Ph P2) = P(n, S) where: 

• 7t — TV] = K2 

• S = {s\s eSi vs eS2) 

This is essentially the union of all instances between two perspectives with 

different filters but the same pattern. Again, the inclusion of association nodes to support 

the hypergraph and treating links similarly to components, does not pose any problems to 

the mathematics originally created for perspectives on simple hypermedia graphs. 

The next three definitions provide operations that are important characteristics of 

hypermedia systems, whether or not an overview graphic is provided. Here browsing is 

done from the perspective overview in order to determine what objects are available from 

a particular class and present through a particular filter. Navigation on the other hand is 

conducted from an instance to another instance that exists within a particular perspective. 

Two differences from the graph model in [Lucarella and Zanzi, 1996] are important to 

note. First, browsing and navigation can return link objects in addition to component 

objects. This may not be intuitive and run-time tools may need to be developed that 

behave differently. If a user "clicks" on a link node in the perspective view of the schema 

and is given a list of link instances, the run-time tools will have to decide what to do when 

the user selects one of elements in the list. Different tools legitimately could provide 

different results. Options include: 
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• Show a graph including the link and all of the components connected to that 

link. Mildly connected components and the links that create the paths could be 

shown as well. 

• Allow the user to navigate (also defined below) in the direction of the link and 

be presented with a list of components that could be visited. The revised 

definition of adjacency presented in Chapter III becomes of interest as the tool 

must decide what to display to the user in the case of a link-to-link situation. 

Second, the navigation operation must consider the revised definition of adjacency and the 

presence of n-ary links. Since links-to-links are possible, adjacent component nodes are 

the targets of navigation, not the links that connect them. This may seem like an 

abandonment of focus on links and a reversion to primacy of node content, but it is not. 

This is the one operation for which links truly are merely a path to follow, as the name of 

the operation suggests. N-ary links must be.handled by giving the user a choice of 

components to navigate to. This is particularly interesting with regard to reverse 

navigation. It is feasible to navigate from one node to another across a link, then to 

reverse navigate but to end up at a different component. However, this is consistent with 

the semantics of the n-ary links. N-ary links establish a common association between two 

sets of components, not just in the type of association, but in the instance of the 

association as well. 

Definition 14. Given a perspective P(n, S), let c e N(n) be a node (either a 

component or link class). A browsing operation 3§ returns all of the relative object 

instances for c within the HOMIS that are included in one of the pattern instances s e S: 

3SJ(P) = {o\o =J(C)AO eN(s)} 

Definition 15. Given a perspective P(n, S), let o be a displayed object (either 

component or link) in the instance s e S, and let a be one of its complex attributes. Then 

a navigation operation yTreturns the linked objects: 

jr(o)(P) = {o'\ 3Y, Zsuchthato SYAO' eZA(Y,a, Z) ES'AO' eN(s)} 

Definition 16. Given a perspective P(n, S), let o be a displayed object (either 

component or link) in the instance s e S, and let a be one of its complex attributes. Then 

a reverse navigation operation jf returns the linked objects: 
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ya(o)(P) = {o'\ 3Y, Zsuchthato EYAO' EZA (Z, a, Y) ES'AO' eN(s)j 

The navigation and reverse navigation definitions differ substantially from those in 

the original model in that that the relationships in =§"are of the form (set, association, set) 

instead of (element, association, element). 

D. USER INTERFACE DESIGN ISSUES 

1.   Consistency 

Consistency of the user interface is vital to reducing the cognitive load on the user. 

Since querying will primarily be done through successive filters, it is important the coding 

of the symbols shown the user remains the same throughout each iteration. Colors and 

shapes represent important information to the user as to what type of object is being 

shown [Galitz, 1993]. Therefore, if rectangles are used for object instances in one version 

of the graph they must be used in all successive versions. Likewise color changes must 

not occur. It could be possible to create run-time applications that assign different color 

codes to each level of abstraction in a class hierarchy. As the user moves up and down 

these levels in setting perspectives and filters all interactions must retain the same color 

coding. Therefore, color coding should either be added to the model in the storage layer 

or should be calculated consistently among run-time applications from storage layer 

attributes. 

2.   Coding 

In the examples produced so far, only simple coding is used. The model could be 

enhanced to code different classes with different shapes or colors. An example might be 

to include an icon with each class type. In this way people could be represented by images 

of people, text can be indicated by some sort of text icon. Different types of links could 

be distinguished by different colors.   Inheritance is already coded in the schema graph 
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through a thicker line than that used for other edges. Therefore, this technique should not 

also be used for other meanings. [Mayhew, 1992] 

One coding aspect that is commonly used in hypermedia research is length of edge 

in a graph to indicate the closeness in terms of association of two pieces of information. 

Longer edges imply that the two nodes are not as closely related as shorter edges. Given 

the difficulty in finding a graph display that will draw nodes and edges in a visible manner 

given that different analysts are adding information under different perspectives, this does 

not appear useful for dynamic hypermedia. One coding option for these "fish-eye views" 

[Tochtermann, and Dittrich, 1992] is to use color intensity. The more intense the 

component, link, and edges, the more closely related the information. 

Particular implementation of HOPE architectures are going to need to establish 

coding conventions for developers of run-time software. The integration of already 

produced software could complicate this issue, but these modules are more likely to be 

dealing with content rather than the hypermedia structures themselves. 

3.  Access to Schema 

Many types of users might use the hypermedia systems built using the HOPE 

architecture. Not all may be comfortable with the graph view. The run-time layer offers 

the opportunity for a wide variety of applications to be produced that interact with 

individual user types in a manner that is appropriate for their job. Those who will only 

pose criticisms can interact through a simple form window and ne%er see the hypermedia 

structures underneath. Those who are responsible for connecting items could view 

individual components and have link options made available through a nwnu. Once again 

they do not need to view the hypergraph. However there is considerable research that 

indicates that providing the hypergraph perspectives to the user »ill actually make their 

job easier [Nielsen, 1995]. 
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VI.      APPLICATION TO SOFTWARE REQUIREMENTS ANALYSIS 

A. COMPUTER AIDED PROTOTYPING SYSTEM (CAPS) 

Software engineering is an analytical activity that fits the pattern described earlier. 

In particular the requirements analysis process, where one must trace user needs to 

software requirements and requirements to design decisions and components is a natural 

fit for this pattern. A model for such analysis has been developed for use with the 

Computer Aided Prototyping System (CAPS) [Ibrahim, 1996]. CAPS is an integration of 

software engineering tools developed to support research in software engineering and to 

assist software engineers in the development of real-time prototypes. The software 

lifecycle supported is shown in the following figure. 

1 
Initial goals 

i 
Determine 

requirements 
-Requirements 

-Performance- 
Demonstrate 

prototype 

New goals 

Modularization + objects 

Validated Requirements 

Construct 
production system 

Figure 6.1 Prototyping life cycle. [Luqi and Berzins, 1988] 
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In this model, the requirements are not assumed correct and complete at the 

beginning of the project. Instead, an iterative process of developing prototypes, 

demonstrating them to the users, and evaluating their responses is used to incrementally 

improve the requirements set. An evolution process is needed to manage the analysis of 

these inputs and ensure that improvement is made with each cycle. Formal model-based 

tools to support such a process are vital to keeping the integrity of a project through each 

cycle. This is particularly important in large projects where multiple analysts and 

designers work concurrently. [Luqi and Goguen, 1997] 

The hypergraph [Luqi, et. al, 1994] model of software evolution was introduced 

in an earlier form as a graph model [Luqi, 1990]. In both models, there are two main 

types of elements that are the primitives from which all others are described. These are 

software components and evolution steps. Initially, only components and steps that dealt 

with software design were described in the model. Ibrahim extended the model to include 

components and steps relative to the requirements analysis aspects of the prototyping 

lifecycle [Ibrahim, 1996]. Ibrahim's component extensions included the actors in the 

lifecycle processes. In this thesis the model is described in terms of an object-oriented 

hypermedia architecture [Schwabe, et. al., 1995]. Steps are former described in terms of 

run-time layer applications that support analysis efforts. 

The Prototype System Design Language (PSDL) [Luqi, et. al, 1988] forms the 

basis for CAPS. PSDL models the timing and control constraints of real-time software 

and can be used to automatically generate Ada code for prototype implementations of a 

system. CAPS is structured as an integrated collection of software tools grouped in the 

subsystems shown in the figure below [Luqi and Ketabchi, 1988]. 

The Evolution Control System (ECS) controls and manages software components 

and development team interactions. The initial version of the ECS handled version control 

of PSDL components and the scheduling of developer tasks. [Badr and Luqi, 1994] 

Subsequent work added requirements management steps and artifacts to the system 

[Ibrahim, 1996]. 
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User Interface 

Software Base Editors Project Control Execution Support 

ECS Merger 

Figure 6.2 CAPS Structure [Ibrahim, 1996] 

B. DECISION SUPPORT MECHANISMS FOR CAPS 

Software evolution encompasses the activities that change a software system and 

the relationships among those activities. These include requirements analysis, 

modifications to existing components, and many other activities [Luqi and Goguen, 1997]. 

Change occurs throughout the lifecycle of software products. Software evolution 

processes manage and steer such change. In the model used by CAPS, change motivates 

the use of a prototyping process that interleaves evolution activities with development 

[Luqi, 1989]. 

The evolution control system of CAPS is intended to support the following 

capabilities listed in [Ibrahim, 1996]: 

1. Planning the prototype demonstration. 

2. Mapping user criticisms into the primitives of a formalized model to be 

analyzed and elaborated so that they can be synthesized into a set of issues to 

be resolved. 

3. Analyzing alternatives available and choosing among them to make necessary 

modifications in the design to resolve the open issues. 
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4. Creating analysis activities. Plan and execute these activities when the needed 

resources are available. 

5. Controlling the evolution of the requirement components that are directly 

affected, as well as propagating the implied effects of the changes and 

configuring the whole requirements hierarchy accordingly. 

6. Propagating any changes in requirements to the affected parts of the system 

design and implementation. 

7. Coordinating the effort of the design team. 

8. Controlling versioning and configuration management to faithfully reflect the 

intended effect of the dynamic ongoing changes. 

Actors and use cases developed to better understand these requirements are provided in 

Appendices A and B respectively. The methods and formats used are derived from 

[Jacobsen, et. al., 1992], [Rumbaugh, et. al, 1991], and [Awad, et. al., 1996]. 

Steps are initiated automatically through dependencies in the model. As will be 

shown, the ability of the HOPE architecture to support links-to-links is used to link steps 

to the associations that cause their initiation. 

All steps have states. The states used are listed below and shown in the diagram 

that follows [Badr and Luqi, 1994]: 

1. Proposed: The initial state of a newly created step. In this state a step is 

subjected to cost and benefit analysis. 

2. Approved: The work to be accomplished has been approved by the manager 

and scheduling attributes such as priorities, required skills, and effort estimates 

have been determined. 

3. Scheduled: The step has been scheduled for implementation and expected 

starting and finish times are calculated. 

4. Assigned: A step has been assigned to a designer or analyst and the work is in 

progress. 

5. Completed: In this state the output of the step has been verified, and an 

immutable version has been entered into the project database. 
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6.   Abandoned:  The step has been cancelled before it has been completed.  It is 

reachable from all other states except the "Completed" state. 

^> 

Active 

Proposed 
approve 

-> 
Approved 

schedule 
 M 
<^ 

Scheduled 

1 
~k suspend 

suspend 

A 
assign 

JL 
Assigned 

abandon 

Abandoned 

commit 

JL 
Completed 

Figure 6.3 ECS Step States 

The inputs and outputs of these steps are described below [Ibrahim. 1996]. 

1. Criticisms: These are comments provided by users concerning their evaluation 

of a prototype resulting from a demonstration. The criticism can be linked by 

the user to a particular scenario, demonstration, or prototype. 

2. Issues: Issues are created using criticisms posed by users They are one of the 

intermediate results of analyzing criticisms.   Issues represent the problems to 

be solved. 

3. Requirements: These describe alternative means b> which issues can be 

solved. An alternative is selected when a particular set of requirements is 

approved by the project manager. 

4. Module: Modules represent the design elements of the swem. These can be 

PSDL components, Ada code, or any other form of implementation of a set of 

requirements. 
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5. Demonstration: A demonstration is set up by a project manager. It 

incorporates a series of test scenarios, and is intended to demonstrate a 

particular set of requirements that have been implemented. 

6. Scenario: A scenario is a series of user-system interactions designed to 

demonstrate the satisfaction of a particular set of requirements solving a 

particular set of issues. It is intended to guide a user's examination of a system 

prototype. 

7. Prototype: A prototype represents a collection of design modules that 

together represent a version of the system being developed. The entire 

prototype is examined by the user during a demonstration. 

All of these objects are immutable once the step that creates them is completed. Once 

created their content is not permitted to be changed in any way. Their status may 

however change. It is for this reason that status is captured as a separate component node 

class. This provides a history of a project through its artifacts. In order to effect change, 

new versions are created. Links between artifacts are permitted to be changed. 

Associations among the elements are the primary contributions of the analysts involved. 

One of the challenges in using hypermedia for software engineering is determining how to 

handle changes to associations when there are multiple versions of a product. The choice 

made here has been to replicate links to each new version, then only change the links on 

the current versions being analyzed. Links to previous versions become immutable when 

the steps producing those previous versions enter the completed state. 

The associations used in the model are: 
1. PartOf: This type of link connects objects of the same type and represents the 

decomposition structure of software components or steps. 

2. Uses:  Links components to show that either the semantics or implementation 

of one is affected by the other. 

3. Primarylnput:  Links an object to be updated to a step that will create a new 

version of the object. 

4. Secondarylnput:   Links an object to steps that need read-only access to the 

object. 
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5. Affects: Links a criticism to an issue or an issue to a requirements component 

that it affects. This is relation is explicitly declared by an analyst or designer. 

6. Poses: Links a user to a criticism that he or she poses. 

These associations are supplemented with some new ones that better express the 

relationships between items in a hypermedia model. Some of these relationships did not 

make sense in a non-hypermedia interpretation as originally created. These associations 

are: 

1. Criticizes: Indicates the object of the user's criticism. Different from affects in 

that it does not cause a ripple effect when a change occurs. 

2. AssignedTo: This was a treated as an attribute within an object in the object 

model and was left out as an inter-object relationship between steps and 

people. 

3. Collects: An inverse of secondary input. 

4. Spawns: Unique to this hypermedia approach to immutable objects and 

therefore not in Ibrahim's or Badr's models. Spawns is a relationship between 

a version of an object and a future version that is created from it. By using this 

relationship, links to the parent version can be used to navigate to newer 

versions. Likewise, algorithms can decide when to copy links possessed by the 

parent object to the spawned object. 

5. Initiates: Connects a step to the association that caused it to be necessary. All 

previous models described the steps as associations, here they are components 

and initiates is the association to a new step (implemented as link-to-link). For 

example, when a user submits a criticism of a prototype, an analysis step 

finding the issues related to the criticism must be initiated. The analysis step is 

a component that has been initiated by the action taken by the user to submit 

the criticism. Therefore, it is related to the association between the user and 

the criticism and thus a link to a link (see Figure 6.10). 

6. hasState: Using the state pattern [Gamma, et. al., 1995] [Pree, 1995], state is 

represented as an object separate from the step that it is describing. The 

association hasState provides the connection. 
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7. Demonstrates: This is a special case of uses. 

8. Tests: Like demonstrates this is a special case of uses. 

The schema that creates these objects and relationships is shown below in OMT 

notation. 

User 

rganization: String: 

Person 

name: String 
mail: String = 

_ mi 

— •■•■ 

ProjectMember 

%s kills : String ="" 
d^busy: Boolean = False 
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Figure 6.4 Humans 

Designer 

Step       o 

A 

StepState 

►State : String = "Proposed' 

Analysis Design Substep 

t> 

Criticism Analyis Is sue Ana lysis RequirementAnalysis 

Figure 6.5 Steps 
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As stated in Chapter III, the conceptual schema for this hyperobject multimedia 

analysis system is I = (C, T,A,&>&sf)- 

C = {Person, User, Analyst, Designer, Step, Analysis, Design, Substep, 
CriticismAnalysis, IssueAnalysis, Requirement Analysis, poses, 
Criticism, criticizes, assignedTo, affects, collects, uses, Issue, 
Prototype, Demonstration, spawns, demonstrates, Module, 
Requirement, partOf, Scenario, initiates, StepState, 
ProjectMember, tests, hasStatej 

T = {String, PSDL, Boolean} 

Note that T is being kept minimal here. No further types are required to 

implement the prototyping method, though they may be used to enhance the information 

presented to the analysts. 

A = {poses, criticizes, assignedTo, affects, collects, uses, spawns, partOf 
name, email, description, period, version, code, organization, 
initiates, hasState, state, skills, busy, demonstrates, tests} 

&>= {(User, organization, String), (Person, name, String), 
(Person, email, String), (Criticism, description, String), 
({User}, poses, {Criticism}), 
({poses}, initiates, {CriticismAnalysis}), 
({Step}, hasState, {StepState}), (StepState, state, String), 
(ProjectMember, skills, String), (ProjectMember, busy, Boolean), 
({CriticismAnalysis}, assignedTo, {Analyst}), 
({Criticism}, criticizes, {Prototype}), 
({Criticism}, criticizes, {Demonstration}), 
({Criticism}, criticizes, {Scenario}), 
(Prototype, version, String), 
(Demonstration, period, String), (Scenario, description, String), 
(Issue, description, String), ({Issue}, spawns, {Issue}), 
({affects}, initiates, {IssueAnalysis}), 
({IssueAnalysis}, assignedTo, {Analyst}), 
({Issue}, affects, {Requirement}), 
({affects}, initiates, {RequirementAnalysis}) 
({RequirementAnalysis}, assignedTo, {Analyst}) 
({Requirement}, uses, {Requirement}) 
({Requirement}, partOf, {Requirement}), 
({Requirement}, spawns, {Requirement}), 
(Requirement, description, String), 
({Requirement}, affects, {Module}), (Module, code, PSDL), 
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({affects}, initiates, {Design}), 
({Design}, assignedTo, {Designer}), 
({Module}, uses, {Module}), ({Module}, spawns, {Module}), 
({Module}, partOf, {Module}), 
({Demonstration}, demonstrates, {Prototype}), 
({Prototype}, spawns, {Prototype}), 
({Prototype}, collects, {Module}), 
({Demonstration}, uses, {Scenario}) 
({Scenario}, spawns, {Scenario}), 
({Scenario}, tests, {Requirement}), ({Step}, uses, {Substep})} 

%f= {(User, Person), (CriticismAnalysis, Analysis), (Analysis, Step), 
(Analyst, ProjectMember), (ProjectMember, Person), 
(IssueAnalysis, Analysis), (RequirementAnalysis, Analysis), 
(Design, Step), (Designer, ProjectMember), (Substep, Step)} 

j/= {poses, initiates, hasState, assignedTo, criticizes, affects, spawns, 
uses, partOf, demonstrates, tests} 

1.  Requirements Analysis Process Overview 

The analysis phase of the prototype cycle is shown in the figure below [Ibrahim, 

1996]. 

65 



Demonstrate 
Prototype and 

record criticisms 

Synthesize issues 
from refined 
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Modify affected 
requirements 

To Design Change Phase 

Figure 6.7 Requirements Analysis Process Schematic 

2.   Initial Requirements 

The hfecycle of a project starts when an initial set of requirements has been 

collected. For the sake of illustration, we will create a HOMIS to be the project database 

of a prototyping project. There is one analyst, one designer, and two users for this 

prototyping project. An initial set of two requirements has been collected and entered into 

the system. The HOMIS for this project would start off as described below. 

I'is described above. 

O = {userl, user2, anall, designer!, reql, reqlj 
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S= {(userl, User), (user2, User), (email, Analyst), (designerl, Designer), 
(reql, Requirement), (req2, Requirement)} 

5f= {(userl, name, stringl), (userl, email, string!), 
(userl, organization, string3), (userl, name, string4), 
(user2, email, string5), (user2, organization, stringö), 
(anall, name, stringl), (anall, email, string8), 
(anall, skills, string9), (anall, busy, booleanl), 
(designerl, name, stringl 0), (designerl, email, stringl 1), 
(designerl, skills, stringl 2), (designerl, busy, boolean2), 
(reql, description, stringl3), (req2, description, stringU) } 

typen (e.g., stringl4) indicates an anchor to an instance of a particular type t. This 

ties an object to a particular V(t) found in the within-content layer of HOPE. 

The first steps to be performed are design steps. If one design step is being 

performed to handle both of the initial requirements, then after the assignment to the 

designer the sets would look like the following (relevant to their initial states). 

0 = 0 u {designl, stepstatel, hasStatel, assignment 1} 

^f=J\j{(designl, Design), (stepstatel, StepState), (hasStatel, hasState), 
(assignment^ assignedTo)} 

&= 5Cu {({designl}, assignment!, {designerl}), ({designl, hasStatel, 
{stepstatel}), (stepstatel, state, stringl5)} 

The anchor stepstatel would point to a state object that represents that the step has been 

assigned. 

After the design of the modules has been completed, the check in of the modules 

changes the links and content of the components. The state of the design step is changed 

to completed, but no change occurs in the sets above for that to happen, stepstatel is a 

mutable object in the within content layer and can be modified once retrieved. The final 

action taken is that the module that is entered into the project database is connected to the 

requirements that affected it. The assignment connection is left as it was as a record of 

who performed the design. Since the assignment is from a step with a completed state 

now, we can easily filter the display to prevent its appearance if desired. 

O = O u {modulel, affectsl, affects!, initiatesl} 
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J^J^u {(module 1, Module), (affectsl, affects), (affects1, affects), 
(initiatesl, initiates)} 

3'= Sfu{({reql}, affectsl, (module 1}), ({req2}, affects2, {module 1}), 
(modulel, code, PSDL1), 
({affectsl, affects2}, initiatesl, {designl})} 

At the end of this step the hypergraph representing these sets would appear as 

follows: 
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Figure 6.8 Hyper graph after initial development. 
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3.   Demonstration Step 

As specified in [Ibrahim, 1996] the demonstration step is to proceed as follows. 

Test scenarios are run with the users using the prototype to be reviewed. Their criticisms 

are recorded, reviewed for accuracy, and recorded in the project database. These are to 

be associated with the users who posed them along with any amplifying information. The 

comments must also be linked to the scenarios and version of the prototype being 

demonstrated. 

Specific use cases are provided in Appendix B. One aspect that immediately 

becomes apparent in use case analysis of this step is how much easier preparing for the 

demonstration becomes with hypermedia tools available. 

Demonstrations for users should be matched to their concerns and to their 

expertise. In a non-hypermedia environment, one would need to search for issues of a 

particular nature, or criticisms posed by a particular user. Queries would then be issued to 

find requirements traced to those, or involving the same keywords. In the hypermedia 

architecture being proposed here, one could merely link a demonstration object to the 

issues. Agents that can follow particular types of links and recognize particular structures 

can find the scenarios that have been previously linked to the requirements found to be 

associated with the issues of interest to a particular user. 

Before the demonstration can proceed, test scenarios need to be developed and a 

demonstration planned. 

0 = 0 u{scenariol, demol, testsl, tests2, usesl, protol, demonstrates!, 

collectsl} 

^J^u {(scenariol, Scenario), (demol, Demonstration), (testsl, tests), 
(testsl, tests), (usesl, uses), (protol, Prototype), 
(demonstrates!, demonstrates), (collectsl, collects)} 

&= ^u {({scenariol}, testsl, {reql}), ({scenariol}, testsl, {reql}), 
(scenariol, description, stringlö), (demol, period, stringll), 
({demol}, usesl, {scenariol}), 
({demol}, demonstrates!, {protol}), (protol, version, stringl8), 
({protol}, collects, {module!})} 
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The semantics of when to use an n-ary link and when to use separate links deal 

with whether or not the n relationships will ever be divided into individual relationships. 

In the initial development step, the relationship of the two requirements to the single 

module initiated the single design step. Therefore, a single link that included both 

requirements on the from end was appropriate. In developing the test scenario and 

planning the demonstration, the desire to reuse the scenario in the future and the 

recognition that either one or both of the first two requirements could change (in future 

versions) leads to the use of individual links. 

Once the demonstration has been executed the user enters criticisms that are linked 

by run-time tools to the appropriate scenarios, demonstration, or prototype, depending 

how specific the user wishes to be. The creation of criticisms initiates criticism analysis 

steps that begin in the proposed state. After reviewing the criticisms for clarity, 

plausibility, and consistency, the steps are moved into the approved state, then get 

scheduled. Finally, the analysis of criticisms is assignedTo an Analyst. 

0 = 0 u{posesl, criticisml, criticizes!, initiates2, critanall. hasState2, 
stepstate2, poses2, criticism2, critisizes2, initiates^, critanaU, 
hasState3, stepstate3} 

J^= J\j {(posesl, poses), (criticisml, Criticism), (critisizesl. criticizes), 
(initiates2, initiates), (critanall, CriticismAnaiysis). <hasState2, 
hasState), (stepstate2, StepState), 
(poses2, poses), (criticism2, Criticism), (critisizes2. criticizes), 
(initiates^, initiates), (critanaU, CriticismAnaiysis). (hasStatt'3. 
hasState), (stepstate3, StepState)} 

J?= S'u {({userl}, posesl, {criticisml}), 
(criticisml, description, stringl9), 
({criticisml}, criticizes, {protol}), 
({criticizes 1}, initiates2, {critanall}), 
({critanall}, hasState2, {stepstate2}), (stepstau-2 siutc. string 1), 
({user2}, poses2, {criticism2}), 
(criticism2, description, string20), 
({criticism2}, criticizes, {scenariol}), 
({criticizes2}, initiates3, {critanaU}), 
({critanaU}, hasState3, {stepstate3}), (stepsian-3. stun- string22), 
({critanaU}, assignment2, {anall})} 

The hypergraph could appear as in the figure below. 
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Figure 6.9 Hyper graph after the demonstration step 

Overview diagrams like the one above are too complex for the user to make use 

of. As the number of components and links increases it becomes difficult for the analyst to 

utilize such diagrams.  For this reason, diagrams that follow will use perspectives to limit 
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the hypergraph to the information needed.   This will help simplify the diagram and help 

focus attention on the most important points. Likewise, analysts would do the same. 

4.   Criticism Analysis Step 

When the demonstration step is completed, and criticisms have been assigned, 

analysis is performed to extract issues from the criticisms. If issues already exist, the 

analyst wants to connect criticisms to those issues if possible. Therefore, issues and 

criticisms are both part of the perspective of the analyst. The user's themselves are part of 

the perspective as it is possible that criticisms from multiple users contradict each other or 

contradict issues brought about by past criticisms of other users. Using HOPE tools, we 

can predefine a perspective for criticism analysis. We do this using the schema and 

"clicking" on those component and link classes that are of interest to the analyst in this 

situation. Those selected are: 

• poses 

• criticizes 

• Issue 

• Criticism 

If we had more entries in the project database at this point a filter would be necessary as 

well. We will have entries to filter out later in the scenario. The resulting hypergraph is 

shown below. 
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string3        W-organization— user! -poses-»^ 

version»)        string18 

—poses2—» 

string20 

description 

criticism2       —critidzes2 scenariol -description—►(       string 16 

Figure 6.10 Criticism Analysis Perspective 

The analyst finds the issue in the criticism assigned and creates an issue object. 

The criticism is linked to the issue using the affects relationship and a new IssueAnalysis is 

initiated based on that action. The IssueAnalysis begins in the proposed state and is 

eventually scheduled and assigned. The criticism posed by userl is then assigned to the 

analyst who decides that the criticism affects the same issue and does not require the issue 

to be reworked. The criticism is joined to the same link used by the other criticism in 

order to prevent a separate issue analysis from being created. The alternative if the two 

were different but revolved around the same issue would be to spawn a new issue and 

attach the second criticism to that new version of the issue. The run-time application then 

knows to attach links for those relationships of the previous version to the new version. 

The criticism analysis is now completed. 

0 = 0 u{affects3, issuel, initiates4, issueanall, hasSiun-4. sn-pstate4i 

jz=^u{(affects3, affects), (issuel, Issue), (initiates4. initiates/ 
(issueanall, IssueAnalysis), (hasState4, hasStata 
(stepstate4, StepState)} 

&= S'u{({criticism!, criticisml}, affects3, {issuel,'). 
({affects3j, initiates4, {issueanall}), 
({issueanaU}, hasState4, {stepstate4}), 
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(stepstate4, state, string23), ({critanall}, assignments, {anall}), 
({issueanallj, assignment^ {anall})} 

string 1 

string2 
description 

protol -versions        string18 

ZL 
string3        W-organization— —poses-» 

* isssuel 

strin320       )     ^^3 

description 

—poses2~*        criticism2        —criti iticizes2- -description—*{       string16 

Figure 6.11 After Criticism Analysis 

5.   Issue Analysis Step 

A new perspective is needed for this step. Issues and requirements are what are 

important here. There is less of a connection to the users, but the criticisms posed and the 

connection their relationship to the prototype and scenarios may still be useful to the 

analyst. The perspective for issue analysis is shown below. The perspective pattern 

classes are: 

N(n) = {Criticism, Prototype, Scenario, demonstrates, Issue, Module, 
Requirement, tests, collects, criticizes} 

The purpose of this step is to determine what requirements are affected by the 

issues presented. There are multiple ways to solve any issue, so many alternatives may 

need to be explored by the analyst. Here the benefit of public vs. private links is shown. 

By keeping links private, an analyst can explore multiple solutions without affecting other 

workers. Decision aids such as those described in the following section can be used to 

choose the best option. Once an option is chosen, those links are made public. Again the 

value added by the analyst is mostly in the creation of links. 
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Here the issue is determined to be best solved by modifying requirement 1. 

Requirements are immutable so a new version of the requirement must be spawned. Run- 

time applications performing this function must know what connections to keep constant 

and what to move over to the new version. The analyst decides that the scenario does not 

My test the new requirement, so a new scenario will have to be developed. 

0 = 0 u{affects4, spawnsl, req3, affects5, affectsö, spawns!, tests3, 
tests4, reqanall, hasState5, stepstate5, initiates5} 

^= ^u {(affects4, affects), (spawnsl, spawns), (req3, Requirement), 
(affects5, affects), (affectsö, affects), (spawns2, spawns), 
(tests3, tests), (tests4, tests), (reqanall, RequirementAnalysis), 
(hasState5, hasState), (stepstateS, StepState), (initiatesS, initiates)} 

^=Su{({reql}, spawnsl, {req3}), ({issuel}, affects4, {req3}), 
(req3, description, string24), ({req3}, affects5, {modulel}), 
({scenariol}, spawns2, {scenario!}), 
(scenario2, description, string25), 
({scenario2}, tests3, {req3}), ({scenario2}, tests4, {req2}), 
({affects5}, initiatesS, {reqanall}), 
({reqanall}, hasStateS, {stepstateS}), (stepstate5, state, string26)} 
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Figure 6.12 Issue Analysis Perspective 

C. DECISION SUPPORT TOOLS USING HYPERMEDIA APPROACHES 

The remaining steps of analysis and design proceed in a similar fashion to those 

described above. Unique perspective patterns may be employed for each step. These are 

stored and retrieved allowing the analyst to easily work on the job at hand. This section 

describes some of the perspectives necessary to assist stakeholders of a prototype system 

being developed.  One of the benefits of perspectives is that it ma> be possible to handle 
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many of the anticipated user interactions through a perspective view, eliminating the need 

to write code for additional run-time tools. There will be situations where it is desirable to 

have a very job-specific run-time application available to guide the user through a set of 

interactions with the hypermedia. 

1.   User Examination of Criticisms 

Users will periodically want to check on the status of the criticisms they have 

posed. They will want to know if the criticism has been analyzed, what the issue was that 

was created or modified based on the criticism, and what version of the system might 

demonstrate correction of their concerns. 

By selecting the following components and links from perspective view a 

perspective for the user can be created: 

• Poses. This causes user, criticism and criticism analysis nodes to be brought in, 

but does not bring in links between criticisms and scenarios, demonstrations 

and prototypes. The state nodes for the analysis are also selected. 

• Affects. By selecting the affects link between Criticism and Issue, issue and 

issue analysis nodes are brought into the perspective. The state nodes for these 

analysis are also selected. 

• Requirements. We select Requirements, Scenarios, Demonstrations, and 

Prototypes to complete the picture. 

The resulting perspective pattern is defined as follows: 

jV^ = (User, poses, Criticism, CriticismAnalysis, initiates, hasState, 
StepState, affects, Issue, IssueAnalysis, RequirementsAnalysis, 
Requirement, Scenario, tests, uses, Demonstration, demonstrates, 
Prototype} 

One issue this example points out is that since links have classes themselves and 

they can appear connecting multiple types of nodes, selecting them once will indicate their 

presence in the pattern in all places where they maintain a weakly connected graph, even if 

not desired elsewhere in the pattern. Schema designers need to take care to only reuse the 
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same association name when the association is truly the same. This is the reason that new 

association names were introduced beyond those used by Ibrahim. Conceivably there will 

be times when a designer does not want to use the same name twice anywhere in the 

schema. 

Given such a perspective pattern, a filter set for the name attribute of User 

equaling a particular string will limit the display to all criticisms posed by a particular user, 

the issues and requirements they relate to, and the prototypes, demonstrations and 

scenarios that show the solutions. The states of all the analyses initiated based on these 

artifacts. The user can then inspect the issues that were derived from the criticisms and 

check to see what versions of the system should contain solutions. 

2.   Manager Checks Ongoing Analysis Efforts 

Another perspective can address a manager's need to see what analysts are 

assigned to what analysis efforts. In this case the perspective pattern is set by selecting 

asssignedTo and hasState as a minimum. This provides a pattern that appears as in the 

following sets: 

jV(^ = (Analyst, assignedTo, CriticismAnalysis, IssueAnalysis, 
RequirementsAnalysis, hasState, StepStatej 

By filtering to only show busy = True analysts, the manager can see what work is 

currently being done. 
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VII.     CONCLUSION AND DIRECTION FOR FUTURE RESEARCH 

A. HOPE ARCHITECTURE 

In this thesis, the architecture used for MORE [Lucarella and Zanzi, 1996] has 

been modified to work with a hypergraph instead of a graph model. All of the operations 

developed for MORE have been redesigned for hypergraphs in HOPE. As hypergraph 

models can be used to describe analysis patterns [Luqi, et. al., 1994] [Luqi and Goguen, 

1997] this aids in the use of the hypermedia system in supporting analysis. 

This extension of the model has also allowed a closer mapping to the Dexter 

Hypertext Reference Model [Halasz and Schwartz, 1994], which is intended to support 

application integration into hypermedia systems and hypermedia transportability. Dexter 

requires support for n-ary links and link-to-link connections. Support for composites was 

not addressed in HOPE and is another area where MORE falls short of the Dexter 

requirements. This is another area for follow-up research. Composites within the 

hypergraph model will essentially create another type of abstraction (in this case based on 

aggregation) for the model and displays. It is suspected that the mathematical model will 

need further evolution to support this capability. 

Link integrity between the storage layer and the within content layer has not been 

adequately solved by any of the research reviewed for this thesis. This thesis does not 

provide a solution either. The problem is complicated for analysis systems in that a 

change to the contents of a node may invalidate a link made between components by an 

analyst. It is vital that link integrity solutions be explored with analysis systems in mind. 

The method used to develop the hypergraph model has had the additional benefit 

of putting links on an equal footing with component nodes. Links can be abstracted, 

filtered, linked, searched for, and returned to run-time applications. This is important to 

analysis applications as the links represent the value added by the analyst. 

Most hypermedia research systems have focused on designs for non-sequential 

authoring and reading. Some analysis support has been done for argumentation and 

software engineering. However, this is perhaps the first example of a framework for easily 

constructing hypermedia analysis support systems. 
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Finally, HOPE allows multiple hyperobject multimedia systems to reside within the 

same storage layer. This can be used to define private workspaces for analysts working 

particular problems. The results of their efforts should be merged with a HOMIS 

representing the general knowledge of the project, or multiple HOMIS should be able to 

be "virtually merged" indicating areas of overlap and connection. In order for an analyst 

to experiment with multiple solutions to a criticism, such private spaces need to be 

established. The answer actually selected needs to be brought back into the hypermedia 

structure. 

B. PRESENTATION ISSUES 

This effort extended some of the presentation options previously available through 

graph-based hypermedia models. Abstraction is used to improve the filtering ability of the 

user, and links are a legitimate focus of perspectives and filtering options. Previous 

research efforts [Nielson, 1995] [Marshall and Shipman, 1993, 1997] demonstrated that 

overview graphs of hypermedia systems enhance user understanding. The work in this 

thesis made use ofthat research as well as work that demonstrated methods to improve 

user comprehension of queries through visual representation [Consens and Mendelzon, 

1989] [Lucarella and Zanzi, 1996]. What is not known is whether the use of abstraction 

will be comprehended by the user. Research should be done to see whether hiding 

information through the use of abstraction actually makes the job of the analyst become 

easier or more difficult. 

Some other aspects need more research. In particular the positioning of nodes and 

links in a frame is made more difficult by the analysis use of the hypermedia. Positions 

cannot be stored with nodes as is done in other systems since modification of the 

hypermedia can be done by multiple users all working under different perspectives. With 

different perspectives set, the positioning of the nodes and links would need to be different 

for each of the users. Others are working on algorithms for automatically positioning 

nodes and edges of graphs. At least one of these need to be integrated with HOPE tools 
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for evaluation. The systems built using HOPE are not yet fully capable of being used with 

even modest amounts of information until such a capability is included. 

Another area for future research is defining filters based on complex attributes. 

The filters defined above only take into account the values of attributes with primitive 

types. However, attributes connecting components (either directly or mildly) to 

components containing particular content could work. In addition, filters that are based 

on attributes connecting targeted structures of sub-hypergraphs could be defined as well. 
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APPENDIX A.    CAPS ACTORS 

1.  ACTOR SUMMARY 

Actors are the human or autonomous agents that exist outside the automation 

boundary for CAPS. The following table summarizes information about CAPS actors. 

The terms used in the table relate to the type of interaction the actor has with CAPS tools 

and information. 

Active/Passive refers to whether or not the actor initiates interaction with the 

tools and information. An active actor initiates the interaction while a passive actor 

responds when a request is forwarded only. 

Client/Non-client refers to whether or not the actor is using the tools for a 

particular purpose, or if they merely affect the system. 

Primary/Secondary indicates if the actor is one of the reasons for the system's 

existence. The existence of an administrator is not a reason to have CAPS tools, but the 

administrator could play an important role. 

C'lieni, Noaclicnt :ond;ir\ 

Project Manager Active Client Primary 

Requirements Analyst Active Client Primary 

Software Designer Active Client Primary 

Stakeholder Active Client Primary 

User Active Client Primary 

Administrator Active Client Secondary 

Analyst Active Client Primary 

Table A-l Actor Summary 
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Administrator 

A 
/ / 
Project Manager 

/ / 
Requirements 

Analyst 

/ 
Software Designer 

Figure A-l Actor Hierarchy 

2.   ACTOR DESCRIPTIONS 

Project Manager (PM) is responsible for the execution of the project. The PM is 

concerned with scheduling individuals to tasks, reviewing the status of the project, and 

choosing between alternative solutions offered for each issue. 

Requirements Analyst (RA) is responsible for reviewing user comments and 

distilling out the issues to be resolved by system requirements. Alternative requirements 

or requirement changes are developed by RA for each issue. 

Software Designer (SD) attempts to satisfy requirements either through changes 

to existing components or the development of new software components. 

Stakeholder is an advisor to the project. Stakeholders effectively make up the 

projects board of directors. Stakeholders represent different interest groups within the 

project (e.g., users or sponsors). 

User is an individual being asked to try a prototype system and provide feedback. 

In a more mature system or in alternate methods, this system does not need to be a 
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prototype and the user can be any user of the software. Users operate the system and 

provide criticisms back to the project. 

Administrator takes care of the support software and database. Administrator 

sets up the schema, adds users to access lists, provides storage volumes to the database 

and performs other such tasks. The decision support system is not built for the 

administrator, but to make the system run smoothly and economically it must be built with 

the administrator's tasks in mind. 

Analyst is a generalization of all analytical actors.   These include PM, RA, and 

SD. 
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APPENDIX B.    USE CASE ANALYSIS 

The following use cases describe the requirements for the CAPS schema and run- 

time layer applications. The HOPE architecture is assumed and is therefore used within 

the requirements even though not a part of the target domain. 

1.  USE SUMMARY AND RELATIONSHIPS 

Uses Tools Sectionflrom Ch. IV) Actor 

Ul 

U2 

U2, U3,   Open and close session, add/edit component nodes,   Project Manager 
U4, U5     link nodes, delete component and link nodes.  
None        openSession Actor 

U3     None        Add/edit component nodes and link nodes, delete   Analyst 
component nodes and link nodes.  

U4     None        Realize edits Analyst, 
Administrator 

U5     U4 Close a session, realize edits Actor 

U6 Open and close session, add/edit component nodes,   Project Manager 
link nodes, delete component and link nodes. 

U2, U3 
U4,U5  

U7     U2, U4,   Open and close session, Retrieve a component node   Software 
U8 content.  Designer 

U8     None        Retrieve component node content. Analyst 

U9     None None Administrator 
U10   U2, U3,   Open and close session, add/edit component nodes,   Project Manager 

U4, U5     link nodes, delete component and link nodes. 

Uli   U8 Open and close session, add/edit component nodes,   User, 
link  nodes,   delete   component   and   link   nodes,   Stakeholder 
Retrieve a component node content. 

U12   U2, U3,   Open and close session, add/edit component nodes,   Requirements 
U4, U5,   link  nodes,   delete  component   and   link   nodes,   Analyst 
U8 retrieve a component node content. 

U13   U2, U3, Open and close session, add/edit component nodes,   Requirements 
U4, U5, link  nodes,   delete  component   and   link   nodes,   Analyst 
U8, retrieve   a   component   node   content,   calculate 
U14, distance, calculate complexity 
U15   

U14   None        Copy a component node with links in tact. Analyst  

U15 None 
U16 None 
U17   None 

calculate distance, calculate complexity 
Search for components and links 

Analyst 
Actor 

View and filter the hypergraph Actor 
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Uses      Tools Section(from Ch. IV) Actor  
El     None     Open a session Actor, Administrator 
E2     None     Retrieve a component's content     Actor 

U6     O 

U1 

U12 

U7 

U10     O 

U11     o 

U13 

U2 

/ 
U14 

/ 
U15 

E1 

U3 

U9 

E2 

U4 O     U5 

U17 

F/gwre 5-i CÄe Ca^e Relationships 

2.   USE CASE SHEETS 

I'se Case 

Actors 

Preconditions 

(LI) Record Initial Requiremei 

Project Manager (PM) 

A HOMIS must be established within the HOPE storage layer. 
The HOMIS has a schema defined appropriate for CAPS and users 
defined to allow access to people in their appropriate roles.  
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Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

The PM opens a session selecting the HOMIS for this software 
engineering project. The PM modifies the HOMIS, by adding 
components representing the initial requirements for the system. 
Requirement nodes are linked together where uses relationships 
occur to create a hierarchy of requirements. The PM can save the 
HOMIS periodically during the session. Upon ending the session, 
the PM is prompted to save the changes to the hypermedia system 
and exit. 
(U2) Open a session, (U3) Modify the HOMIS, (U4) Save Edits 
(U5) Close a session 
There is no HOMIS available, or the HOMIS is locked for edit 
already (note that fiirther work into merging hypermedia is 
required to allow concurrent use). 

Same as preconditions. 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

Actor 

Users exist with appropriate permission to open a session. 

The actor requests a session with a HOMIS. A list of existing 
HOMIS are provided and the option to select one or create a new 
one providing a name for the HOMIS. The user selects the 
HOMIS for the project being analyzed. Actor is asked if this is to 
be an edit or read only session. If the user has appropriate 
permission, a session is opened. 
None 

(El) User does not have permission to open the selected session 
with the HOMIS desired. No session is opened if this is the case. 
Message is sent to Administrator, 
none 

A session is opened to the HOMIS selected. 

I se Case 

Actors 

Preconditions 

Description 

(U3) Modify the project database HOMIS 

Analyst 

Analyst has an open edit session with the required HOMIS. 

Analyst sees a hypergraph view of the project database.    The 
analyst creates new component nodes representing criticisms, 
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Sub Use Cases 

Exceptions 

Activities 

Postconditions 

issues, requirements, or designs and links them to other nodes with 
which they are associated.   Links are also made with nodes that 
already exist.  Deletion of components and links are also done as 
part of the analysis. 
None 

None 

None 

None 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

Analyst, Administrator 

Analyst has an open session with a HOMIS.   Changes have been 
made. 
Analyst requests that edits be saved. System persists the new copy 
of the HOMIS 
None 

None 

None 

Persistent copy of the HOMIS now reflects state as currently 
viewed by the user. (Note later approach may include merging 
hypermedia versions to allow concurrent edits).  

Actor 

Actor has an open session with a HOMIS. 

Actor requests that session be closed. Actor is given the choice to 
save edits if the session is an edit session.   Edits are realized if 
necessary and the session is closed. 
(U4) Save Edits 

None 

None 

Session is closed. 

Actors Project Manager 
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Preconditions 

Description 

Sab Use Cases 

Exceptions 

Activities 

Postconditions 

A HOMIS exists for the project database under consideration. 

The project manager allocates requirements to system design 
components by either linking requirements to existing components 
or creating new design components and linking them to the 
requirements. Design components may be linked to each other to 
provide uses relationships among the components. 
(U2) Open session, (U3) Modify HOMIS, (U4) Save Edits, (U5) 
Close session. 
None 

None 

Session is closed. 

Use Case 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

(17) Desimi Soft wan 

Software Designer 

A HOMIS exists for the project database under consideration. At 
least one design component has been generated and is related to at 
least one requirement (there is a path to a requirement). 
The software designer (SD) opens a read only session (this does 
not require a lock on the hypertext, it is merely used to retrieve a 
component for edit - the editor determines locking on the content) 
to the HOMIS and retrieves the software component for edit. By 
opening the node for edit, the PSDL editor is launched and the 
designer creates and modifies the design. The PSDL editor is used 
to store content changes. 
(U2) Open session, (U8) Retrieve a Component. (U5) Close 
session. 
None 

None 

Session is closed. 

Use Case 

Actors 

Preconditions 

Description 

^'Snb Use-Cases:' 

(U8) Retrieve a Component 

Actor 

A session is open with a HOMIS. 

The actor selects a component through one of mam user interface 
options and chooses to retrieve the contents for cither viewing or 
editing.  The presentation specification of the component is used 
to launch an appropriate application to work with the content. 
None 
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Exceptions 

Activities 

Postconditions 

(E2) Anchor link to content does not exist. 

None 

A session is open with a HOMIS. 

Ise Case 

Actors 

Preconditions 

Description 

Sub^se€!ases;:::. 

Exceptiwis 

Activities 

Postconditions 

(U9) View Security Lou 

Administrator 

None 

The administrator opens the log and is able to view all entries. No 
edit capability is given.   The administrator my delete or copy the 
entire log. 
None 

None 

None 

None 

I se Case 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

(U10) Plan Demonstration 

Project Manager 

A HOMIS representing the project database is present in the 
HOPE. 
The project manager opens an edit session with the HOMIS.  By 
adding a demonstration node to the hypergraph, the demonstration 
is created.   The project manager then links design components, 
requirements, issues, or criticisms with the demonstration.   Since 
paths exist from all design components all the way back to 
requirements and through all issues and criticisms addressed to the 
users, any user may determine what  is being  demonstrated. 
Demonstration scenarios are also linked to the node.   These also 
refer back to requirements and therefore to the other nodes 
connected to them. When finished, the project manager saves the 
edits and closes the session. 
(U2) Open a session, (U3) Modify the HOMIS, (U4) Save Edits 
(U5) Close a session 
None 

None 

A demonstration node exists. 
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Use Case (LM 1) Submit Criticism 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

User and Stakeholder 

A demonstration exists in the HOMIS. 

The user or stakeholder opens a session with the HOMIS. A new 
criticism component is created and the contents are modified to 
reflect the users criticism. The user/stakeholder links the criticism 
(this could be done automatically by the user interface) to a 
particular demonstration scenario. The criticism is automatically 
linked to the user by the runtime layer application making the 
appropriate requests of the storage layer. The changes are saved 
and the session is closed. 
(U2) Open a session, (U3) Modify the HOMIS, (U4) Save Edits 
(U5) Close a session, (U8) Retrieve a Component 
None 

None 

A new criticism node now exists.. 

Use Case 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

(U12) Analyze a Criticism 

Requirements Analyst 

A criticism exists within the HOMIS representing the project 
database. 
The requirements analyst opens a session with the HOMIS. 
Retrieving the criticism and reading it, the analyst either creates 
and adds text to a new issue component node, then links it to the 
criticism, or links the criticism to an existing issue node.   The 
changes are saved and the session is closed. 
(U2) Open a session, (U3) Modify the HOMIS, (U4) Save Edits 
(U5) Close a session, (U8) Retrieve a Component 
None 

None 

A new criticism node now exists.. 

Use Case 

Actors 

Preconditions 

Alternatives 

Requirements Analyst 

An issue to be resolved exists within the HOMIS representing the 
project database. ,  
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Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

The requirements analyst opens a session with the HOMIS. 
Retrieving the issue and reading it, the analyst either creates and 
adds text to new requirement component nodes, then links them to 
the issue, or links the issue to existing requirement nodes. 
Requirement nodes can also be copied and edited creating new 
versions of these requirements. The other links of the copied 
requirement must also be copied to the new node. These 
requirements must have a relationship with the original 
requirement illustrating the update. Multiple alternative solution 
relationships can be set up between issues and collections of 
requirements. Distance and complexity calculations are performed 
on each alternative to help make a decision. When a decision is 
made one alternative relation is changed to a uses relation. The 
changes are saved and the session is closed. 
(U2) Open a session, (U3) Modify the HOMIS, (U4) Save Edits 
(U5) Close a session, (U8) Retrieve a Component, (U14) Copy a 
node with links intact, (U15) Calculate distance and complexity 
None 

None 

A new criticism node now exists.. 

Use Case 

Actore;;^:'.V/-V;..t" 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

(U 14) Copy a Node with links intact 

Analyst 

A component node exists in the HOMIS. An edit session is open. 

The analyst selects a component node to be copied.  A new node 
is placed in the hypergraph with links in place to all nodes linked 
by the original object.   A link from the original to the copy is 
automatically created indicating that this is an updated version. 
None 

None 

None 

A new node now exists.. 

Use Case 

Actors 

Preconditions 

5) Calculate Distance and Complexity 

Analyst 

A component node exists in the HOMIS. An session is open. 
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Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

The analyst selects a component node to be analyzed. The 
distance from the selected node to all leaf nodes, where no mildly 
connected paths are followed, is calculated. The longest distance 
is returned. The total number of links directed out from the node 
selected to leaf nodes is counted (again, no mildly connected paths 
are followed). This number is returned as the complexity. 
None 

None 

None 

None 

Use Case 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

(U 16) Search 

Actor 

A session is open. 

The user determines first if the result of the search should be 
component nodes or links. The actor is then queried for attribute 
and content values that can be used to match the targets. A set of 
objects is returned to the actor. 
None 

None 

None 

None 

Use Case 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

(UI7) View and filter 

Actor 

A session is open 

The actor determines what types of nodes and what values of 
component and link nodes are of interest. For instance, a user may 
wish to only see criticisms and resulting issues that were posed by 
the user. 
None 

None 

None 

None 
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3.   EXCEPTIONS 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

Exception 

A request has been made to open a session to a HOMIS without 
adequate permission. 
The user is informed that the operation cannot proceed.    A 
message is sent to the system administrator's log. 
None 

None 

None 

No session is opened. 

Exception 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Activities 

Postconditions 

(E2) Anchor Link is Broken 

Exception 

A request has been made to open the content of a node. No valid 
anchor link exists. 
The user is informed of the lack of an anchor.    The node is 
removed from the hypermedia system.   A message is sent to the 
administrator. 
None 

None 

None 

The offending node is no longer in the hypermedia system. This is 
true regardless of the type of session that is open.  

102 



INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 2 
8725 John J. Kingman Rd., Ste 0944 
Ft. Belvoir, VA 22060-6218 

2. Dudley Knox Library 2 
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, CA 93943-5101 

3. Center for Naval Analysis 1 
4401 Ford Ave. 
Alexandria, VA 22302 

4. Dr. Ted Lewis, Chairman, Code CS/L l 

Computer Science Dept. 
Naval Postgraduate School 
Monterey, CA 93943-5101 

5. Chief of Naval Research ! 
800 North Quincy St. 
Arlington, VA 22217 

6. Dr. Luqi, Code CS/Lq l 

Computer Science Dept. 
Naval Postgraduate School 
Monterey, CA 93943-5101 

7. Dr. Marvin Langston 1 

1225 Jefferson Davis Highway 
Crystal Gateway 2, Suite 1500 
Arlington, VA 22202-4311 

8. David Hislop * 
U.S. Army Research Office 
PO Box 12211 
Research Triangle Park, NC 27709-2211 

9. Capt. Talbot Manvel : l 

Naval Sea Systems 
2531 Jefferson Davis Highway 
Atta: TMS 378 Capt. Manvel 
Arlington, VA 22240-5150 

103 



10. CDR Michael McMahon  
Naval Sea System Command 
2531 Jefferson Davis Highway 
Arlington, VA 22242-5160 

11. Dr. Elizabeth Wald  
Office of Naval Research 
800 N. Quincy Street 
ONR Code 311 
Arlington, VA 22217-5660 

12. Dr. Ralph Wächter  
Office of Naval Research 
800 N. Quincy Street 
Code 311 
Arlington, VA 22217-5660 

13. Army Research Lab  
115 O'Keefe Building 
Attn: Mark Kendall 
Atlanta, GA 30332-0862 

14. National Science Foundation  
Attn: Bill Barnes 
Div. Computer & Computation Research 
1800GSt.NW 
Washington, D.C. 20550 

15. National Science Foundation. 
Attn: Bill Agresty 
4201 Wilson Blvd. 
Arlington, VA 22230 

16. Hon. John W. Douglass  
Assistant Secretary of the Navy 
(Research, Development and Acquisition) 
RoomE741 
1000 Navy Pentagon 
Washington, D.C, 20350-1000 

17. Technical Library Branch  
Naval Command, Control and Ocean Surveillance Center 
RDT&E Division, Code D0274 
San Diego, CA 92152-5001 

104 



18. Head, Command and Control Department  
Naval Command, Control and Ocean Surveillance Center 
RDT&E Division, Code D40 
San Diego, CA 92152-5001 

19. Head, Command and Intelligence Systems Division  
Naval Command, Control and Ocean Surveillance Center 
RDT&E Division, Code D42 
San Diego, CA 92152-5001 

105 


